-
J Zhang, Y Meng, J Wu, J Qin, T Yao, S Yu
- S Qiu, B Xu, J Zhang, Y Wang,
X Shen
- J Du, X Lu, J Fan, Y Qin,
X Yang
- NYQ Abderrahim, S Abderrahim
- A Sheka, V Samun, T Chumarnaya
78. Benchmark for generic product detection: a strong baseline for dense object detection
- S Klein, A Quaas, J Quantius, H Löser, J Meinel
- O Baghirli, I Ibrahimli, T Mammadzada
- A Letyagin, S Golushko, M Amelin
- SR Kundeti, MA Ansari, A Sanin
- Z Jiang, Z Dong, L Wang, W Jiang
-
Y Toda, T Tameshige, M Tomiyama
- AY Kondratiev, H Yaginuma,
Y Okada
- J Marti Asenjo, A Martinez-Larraz Solís
- S Chaabene,
B Bouaziz, A Boudaya, A Hökelmann
- AA Sherwood, AI Sherwood, FC Setzer, JV Shamili
- J You,
Z Hu, C Peng, Z Wang
- СВ Кравченко, АВ Алексеев, ЮА Орлова
- 王丽芳, 张程程, 秦品乐, 蔺素珍, 高媛, 窦杰亮
-
X Zhao, P Zhang, F Song, C Ma, G Fan, Y Sun
- J Wang, J Yang, L Yu, H Dong, K Yun, Y Wang
- S Turko, L Burmak, I Malyshev, S Shtykov, M Popov
- J Arroyave Lopez, RA Echavarria Echeverri
- S Zhang, Y Zou, T Wang, Y Xiong
- J Adams, J Sutor, A Dodd
- E Khvedchenya, T Gabruseva
- W Luo, M Lin, L Chen, B Peng
- C Bouvier, N Souedet, J Levy, C Jan, Z You
- D Li, X Chu, Y Cui, J Zhao, K Zhang, X Yang
- ВЕ Дементьев, НА Андриянов
- H Lee, S Kim, H Chung, HC Kim
- D Diaz Valencia, S Jaramillo Gonzales
- JM Esteban, J van de Loosdrecht, M Aghaei
- L Deininger, B Stimpel,
A Yuce, SA Sureshjani
- Y Jia, J Tan, Y Xing, P Hong
- A Sugeno, Y Ishikawa, T Ohshima
- A Cheng, M Icaza, N Judd,
J Smith
- 晏旭, 马帅, 曾凤娇, 郭正华, 伍俊龙, 杨平, 许冰
- P Wang, L Ji, Z Ji, Y Gao, X Liu
-
F Foria, M Calicchio, A Tarquini, G Miceli
- H Xu, ZH Yan, BW Ji, PF Huang, JP Cheng, XD Wu
- 杨必胜, 宗泽亮, 陈驰, 孙文鹿, 米晓新, 吴唯同
- LCM Amaral, A Roshan, A Bayat
- TL Dinh, SG Kwon, SH Lee
- A Khamkar, A Pukale, P Joshi
- S Sakib, MTA Abid, NS Tiana, WA Asha, SM Huq
- Y Hou, J Liu, D Wang, J He,
C Fang
- J Wang, L Yu,
J Yang, H Dong
- S Chang, U Lee, MJ Hong, YD Jo
- RF de Moraes, RS Evangelista
- S Ali, P Crawford, D Maire,
A Pandey, K Ajay
- J Law, TG Paulson, CA Sanchez
- Y Pu, Z Feng, Z Wang, Z Yang
-
R Bieck, D Baur, J Berger, T Stelzner
327. Deep learning for skin lesion classification: augment, train, and ensemble= Aprendizado profundo para classificação de lesões de pele: aumento, treino e …
- VA Golodov, AA Maltseva
- KS Kang, YW Cho, KH Jin,
YB Kim, HG Ryu
- J Annuscheit, B Voigt, O Fischer, P Baumann
- L Fang, Y Wu, Y Li, H Guo, H Zhang, X Wang, R Xi
- L Chang, W Zhuang, R Wu, S Feng, H Liu, J Yu
- NPA Duong, A Almin, L Lemarié, BR Kiran
- Y Cai, Y Yang, Q Zheng, Z Shen, Y Shang,
J Yin, Z Shi
358. Deep Learning for Skin Lesion Classification: Augment, Train, and Ensemble
- H Jung, GT Brown, Y Liu
- НА Андриянов, ДА Андриянов
- D Qi, K Hu,
W Tan, Q Yao, J Liu
387. Comparison of the MultiRes U-Net and the classical U-Net on the performance of kidney and kidney tumor segmentation
- L Mak
- VTT Vi, AR Oh, GS Lee, HJ Yang, SH Kim
- L Kalinathan, PG Prabavathy Balasundaram
- A Zhuchkov, D Prokhorov, V Gusev
- M Genaev, E Skolotneva, E Gultyaeva, E Orlova
- СВ Ульянов, АВ Филипьев, КВ Кошелев
- S Nasrin, J Alavi, P Viswanathan
-
HC Chen, SS Tzeng, YC Hsiao, RF Chen
-
J Xi, J Chen, Z Wang, D Ta, B Lu, X Deng
- L Freudenmann, L Sommer
- AYC Tam, BPH So, TTC Chan, AKY Cheung
- LF Henriques,
S Colcher, RL Milidiú, A Bulcão
- VS Samun, AS Sheka, TV Chumarnaya
- АЭ Грибуль, АИ Ненюкова, ВЛ Рыжов
- Y Wang, Q Sun, Z Liu,
L Gu
- I Danilovich, V Moshkin, A Reimche
- MA Genaev, ES Skolotneva, EI Gultyaeva, EA Orlova
- FA Breiki, M Ridzuan, R Grandhe
- G Humblot-Renaux, L Marchegiani
- S Pang, X Liu, S Mao, H Jia, B Liu
- T Monjo,
M Koido, S Nagasawa, Y Suzuki, Y Kamatani
- НА Андриянов, ВЕ Дементьев
- SAH Tabatabaei, P Fischer, S Wattendorf
- YV Fedotova, RUI Epifanov, AA Karpenko