Industry

Lyft
MedHub
Recursion
Everypixel
Neuromation
Ultralytics
borzo
VITECH Lab
Piñata Farms
ЦФТ
Sharper Shape
incode
Anadea
Openface
ID R&D
NewYorker
AriSaf Tech
Celsus

Add a company that uses Albumentations

Please fill an issue in our GitHub repository using the following form to add a company to this list.


Deep learning research

Albumentations is widely used in research areas related to computer vision and deep learning. If you find this library useful for your research, please consider citing Albumentations: Fast and Flexible Image Augmentations:
@Article{info11020125,
    AUTHOR = {Buslaev, Alexander and Iglovikov, Vladimir I. and Khvedchenya, Eugene and Parinov, Alex and Druzhinin, Mikhail and Kalinin, Alexandr A.},
    TITLE = {Albumentations: Fast and Flexible Image Augmentations},
    JOURNAL = {Information},
    VOLUME = {11},
    YEAR = {2020},
    NUMBER = {2},
    ARTICLE-NUMBER = {125},
    URL = {https://www.mdpi.com/2078-2489/11/2/125},
    ISSN = {2078-2489},
    DOI = {10.3390/info11020125}
}

List of papers that cite Albumentations

- NYQ Abderrahim, S Abderrahim
- MA Genaev, ES Skolotneva, EI Gultyaeva, EA Orlova
- 杨必胜, 宗泽亮, 陈驰, 孙文鹿, 米晓新, 吴唯同
150. DCNN-based Screw Classification in Automated Disassembly Processes.
- E Yildiz, F Wörgötter
- 王丽芳, 张程程, 秦品乐, 蔺素珍, 高媛, 窦杰亮
- J Marti Asenjo, A Martinez-Larraz Solís
212. Benchmark for generic product detection: a strong baseline for dense object detection
- L Chang, W Zhuang, R Wu, S Feng, H Liu, J Yu
- HS Arslan, S Archambault, P Bhatt, K Watanabe
- LR Müller, J Petersen, A Yamlahi, P Wise
367. Smartphone Glass Inspection System.
- S Turko, L Burmak, I Malyshev, S Shtykov, M Popov
- J Arroyave Lopez, RA Echavarria Echeverri
- S Zhang, Y Zou, T Wang, Y Xiong
- O Rippel, N Schönfelder, K Rahimi
- D Diaz Valencia, S Jaramillo Gonzales
- JM Esteban, J van de Loosdrecht, M Aghaei
- АИ ЛАБИНЦЕВ, АГ ДОЛМАТОВ
- 晏旭, 马帅, 曾凤娇, 郭正华, 伍俊龙, 杨平, 许冰
- ACG Lombardi, A Ferrari
- F KIYIKÇI, HO CUNEDİOĞLU, E Koşar
- S Sun, H Wang, H Zhang, M Li, M Xiang
- S Sakib, MTA Abid, NS Tiana, WA Asha, SM Huq
- Y Pu, Z Feng, Z Wang, Z Yang
- 林成创, 单纯, 赵淦森, 杨志荣, 彭璟, 陈少洁
- HEB CASS
- 王丽芳, 米嘉, 秦品乐, 蔺素珍, 高媛, 刘阳
554. Deep Learning for Skin Lesion Classification: Augment, Train, and Ensemble
- D Qi, K Hu, W Tan, Q Yao, J Liu
584. Comparison of the MultiRes U-Net and the classical U-Net on the performance of kidney and kidney tumor segmentation
- L Mak
- L Kalinathan, P Balasundaram, P Ganesh
- СВ Ульянов, АВ Филипьев
606. Brain tumor classification on the patient level using attention-based AI methods and multi-sequences MRI
- V Groza, B Tuchinov, E Amelina, E Pavlovskiy
- S Nasrin, J Alavi, P Viswanathan
- J Xie, C Jing, Z Zhang, J Xu, Y Duan, D Xu
- MA Genaev, ES Skolotneva, EI Gultyaeva, EA Orlova
- 장성혁, 이상희, 최용, 김태형, 신소영
- G Gagnéa, JP Mercierb, V Paquinb, Y DeVillersa

Machine learning competitions


Open source projects

open-mmlab/mmdetection 20.8k
OpenMMLab Detection Toolbox and Benchmark
spmallick/learnopencv 16.8k
Learn OpenCV : C++ and Python Examples
deepinsight/insightface 12.4k
State-of-the-art 2D and 3D Face Analysis Project
PaddlePaddle/PaddleSeg 5.2k
Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc.
saic-mdal/lama 4.2k
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022
pytorch/ignite 4.0k
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
NVlabs/imaginaire 3.4k
NVIDIA's Deep Imagination Team's PyTorch Library
catalyst-team/catalyst 3.0k
Accelerated deep learning R&D
ml-tooling/ml-workspace 2.7k
🛠 All-in-one web-based IDE specialized for machine learning and data science.
open-mmlab/mmpose 2.3k
OpenMMLab Pose Estimation Toolbox and Benchmark.
lukas-blecher/LaTeX-OCR 1.7k
pix2tex: Using a ViT to convert images of equations into LaTeX code.
azavea/raster-vision 1.6k
An open source framework for deep learning on satellite and aerial imagery.