Your ad could be here - Reach CV/ML engineers
Contact for advertisingContactInterested in advertising?
Contact usStay updated
News & Insightsexampleexample bboxesexample bboxes2example chromatic aberrationexample d4example documentsexample domain adaptationexample gridshuffleexample hfhubexample kaggle saltexample keypointsexample mosaicexample multi targetexample OverlayElementsexample textimageexample weather transformsexample xymaskingmigrating from torchvision to albumentationspytorch classificationpytorch semantic segmentationreplayserializationshowcase
import albumentations as A
import cv2
from matplotlib import pyplot as plt
def visualize(image):
plt.figure(figsize=(10, 5))
plt.axis("off")
plt.imshow(image)
Load the image from the disk 🔗
img_path = "../images/alina_rossoshanska.jpeg"
img = cv2.imread(img_path, cv2.IMREAD_COLOR_RGB)
Visualize the original image 🔗
visualize(img)

Red-blue mode 🔗
transform = A.Compose(
[A.ChromaticAberration(mode="red_blue", primary_distortion_limit=0.5, secondary_distortion_limit=0.1, p=1)],
seed=137,
strict=True,
)
plt.figure(figsize=(15, 10))
num_images = 12
# Loop through the list of images and plot them with subplot
for i in range(num_images):
transformed_image = transform(image=img)["image"]
plt.subplot(4, 3, i + 1)
plt.imshow(transformed_image)
plt.axis("off")
plt.tight_layout()
plt.show()
