Coding Guidelines¶
This document outlines the coding standards and best practices for contributing to Albumentations.
Important Note About Guidelines¶
These guidelines represent our current best practices, developed through experience maintaining and expanding the Albumentations codebase. While some existing code may not strictly follow these standards (due to historical reasons), we are gradually refactoring the codebase to align with these guidelines.
For new contributions:
- All new code must follow these guidelines
- All modifications to existing code should move it closer to these standards
- Pull requests that introduce patterns we're trying to move away from will not be accepted
For existing code:
- You may encounter patterns that don't match these guidelines (e.g., transforms with "Random" prefix or Union types for parameters)
- These are considered technical debt that we're working to address
- When modifying existing code, take the opportunity to align it with current standards where possible
Code Style and Formatting¶
Pre-commit Hooks¶
We use pre-commit hooks to maintain consistent code quality. These hooks automatically check and format your code before each commit.
- Install pre-commit if you haven't already:
- The hooks will run automatically on
git commit
. To run manually:
Python Version and Type Hints¶
- Use Python 3.9+ features and syntax
- Always include type hints using Python 3.10+ typing syntax:
# Correct
def transform(self, value: float, range: tuple[float, float]) -> float:
# Incorrect - don't use capital-case types
def transform(self, value: float, range: Tuple[float, float]) -> Float:
- Use
|
instead ofUnion
and for optional types:
# Correct
def process(value: int | float | None) -> str:
# Incorrect
def process(value: Optional[Union[int, float]) -> str:
Naming Conventions¶
Transform Names¶
- Avoid adding "Random" prefix to new transforms
# Correct
class Brightness(ImageOnlyTransform):
# Incorrect (historical pattern)
class RandomBrightness(ImageOnlyTransform):
Parameter Naming¶
- Use
_range
suffix for interval parameters:
# Correct
brightness_range: tuple[float, float]
shadow_intensity_range: tuple[float, float]
# Incorrect
brightness_limit: tuple[float, float]
shadow_intensity: tuple[float, float]
Standard Parameter Names¶
For transforms that handle gaps or boundaries, use these consistent names:
border_mode
: Specifies how to handle gaps, notmode
orpad_mode
fill
: Defines how to fill holes (pixel value or method), notfill_value
,cval
,fill_color
,pad_value
,pad_cval
,value
,color
fill_mask
: Same asfill
but for mask filling, notfill_mask_value
,fill_mask_color
,fill_mask_cval
Parameter Types and Ranges¶
Parameter Definitions¶
- Prefer range parameters over fixed values:
# Correct
def __init__(self, brightness_range: tuple[float, float] = (-0.2, 0.2)):
# Avoid
def __init__(self, brightness: float = 0.2):
Avoid Union Types for Parameters¶
- Don't use
Union[float, tuple[float, float]]
for parameters - Instead, always use ranges where sampling is needed:
# Correct
scale_range: tuple[float, float] = (0.5, 1.5)
# Avoid
scale: float | tuple[float, float] = 1.0
- For fixed values, use same value for both range ends:
Transform Design Principles¶
Relative Parameters¶
- Prefer parameters that are relative to image dimensions rather than fixed pixel values:
# Correct - relative to image size
def __init__(self, crop_size_range: tuple[float, float] = (0.1, 0.3)):
# crop_size will be fraction of min(height, width)
# Avoid - fixed pixel values
def __init__(self, crop_size_range: tuple[int, int] = (32, 96)):
# crop_size will be fixed regardless of image size
Data Type Consistency¶
- Ensure transforms produce consistent results regardless of input data type
- Use provided decorators to handle type conversions:
@uint8_io
: For transforms that work with uint8 images@float32_io
: For transforms that work with float32 images
The decorators will:
- Pass through images that are already in the target type without conversion
- Convert other types as needed and convert back after processing
@uint8_io # If input is uint8 => use as is; if float32 => convert to uint8, process, convert back
def apply(self, img: np.ndarray, **params) -> np.ndarray:
# img is guaranteed to be uint8
# if input was float32 => result will be converted back to float32
# if input was uint8 => result will stay uint8
return cv2.blur(img, (3, 3))
@float32_io # If input is float32 => use as is; if uint8 => convert to float32, process, convert back
def apply(self, img: np.ndarray, **params) -> np.ndarray:
# img is guaranteed to be float32 in range [0, 1]
# if input was uint8 => result will be converted back to uint8
# if input was float32 => result will stay float32
return img * 0.5
# Avoid - manual type conversion
def apply(self, img: np.ndarray, **params) -> np.ndarray:
if img.dtype != np.uint8:
img = (img * 255).clip(0, 255).astype(np.uint8)
result = cv2.blur(img, (3, 3))
if img.dtype != np.uint8:
result = result.astype(np.float32) / 255
return result
Channel Flexibility¶
- Support arbitrary number of channels unless specifically constrained:
```python # Correct - works with any number of channels def apply(self, img: np.ndarray, **params) -> np.ndarray: # img shape is (H, W, C), works for any C return img * self.factor
# Also correct - explicitly requires RGB def apply(self, img: np.ndarray, **params) -> np.ndarray: if img.shape[-1] != 3: raise ValueError("Transform requires RGB image") return rgb_to_hsv(img) # RGB-specific processing
Random Number Generation¶
Using Random Generators¶
- Use class-level random generators instead of direct numpy or random calls:
# Correct
value = self.random_generator.uniform(0, 1, size=image.shape)
choice = self.py_random.choice(options)
# Incorrect
value = np.random.uniform(0, 1, size=image.shape)
choice = random.choice(options)
- Prefer Python's standard library
random
overnumpy.random
:
# Correct - using standard library random (faster)
value = self.py_random.uniform(0, 1)
choice = self.py_random.choice(options)
# Use numpy.random only when needed
value = self.random_generator.randint(0, 255, size=image.shape)
Parameter Sampling¶
- Handle all probability calculations in
get_params
orget_params_dependent_on_data
- Don't perform random operations in
apply_xxx
or__init__
methods:
def get_params(self):
return {
"brightness": self.random_generator.uniform(
self.brightness_range[0],
self.brightness_range[1]
)
}
Transform Development¶
Method Definitions¶
- Don't use default arguments in
apply_xxx
methods:
# Correct
def apply_to_mask(self, mask: np.ndarray, fill_mask: int) -> np.ndarray:
# Incorrect
def apply_to_mask(self, mask: np.ndarray, fill_mask: int = 0) -> np.ndarray:
Parameter Generation¶
Using get_params_dependent_on_data¶
This method provides access to image shape and target data for parameter generation:
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any]
) -> dict[str, Any]:
# Access image shape - always available
height, width = params["shape"][:2]
# Access targets if they were passed to transform
image = data.get("image") # Original image
mask = data.get("mask") # Segmentation mask
bboxes = data.get("bboxes") # Bounding boxes
keypoints = data.get("keypoints") # Keypoint coordinates
# Example: Calculate parameters based on image size
crop_size = min(height, width) // 2
center_x = width // 2
center_y = height // 2
return {
"crop_size": crop_size,
"center": (center_x, center_y)
}
The method receives:
params
: Dictionary containing image metadata, whereparams["shape"]
is always availabledata
: Dictionary containing all targets passed to the transform
Use this method when you need to:
- Calculate parameters based on image dimensions
- Access target data for parameter generation
- Ensure transform parameters are appropriate for the input data
Parameter Validation with InitSchema
¶
Each transform must include an InitSchema
class that inherits from BaseTransformInitSchema
. This class is responsible for:
- Validating input parameters before
__init__
execution - Converting parameter types if needed
- Ensuring consistent parameter handling
# Correct - full parameter validation
class RandomGravel(ImageOnlyTransform):
class InitSchema(BaseTransformInitSchema):
slant_range: Annotated[tuple[float, float], AfterValidator(nondecreasing)]
brightness_coefficient: float = Field(gt=0, le=1)
def __init__(self, slant_range: tuple[float, float], brightness_coefficient: float, p: float = 0.5):
super().__init__(p=p)
self.slant_range = slant_range
self.brightness_coefficient = brightness_coefficient
# Incorrect - missing InitSchema
class RandomGravel(ImageOnlyTransform):
def __init__(self, slant_range: tuple[float, float], brightness_coefficient: float, p: float = 0.5):
super().__init__(p=p)
self.slant_range = slant_range
self.brightness_coefficient = brightness_coefficient
Coordinate Systems¶
Image Center Calculations¶
The center point calculation differs slightly between targets:
- For images, masks, and keypoints:
# Correct - using helper function
from albumentations.augmentations.geometric.functional import center
center_x, center_y = center(image_shape) # Returns ((width-1)/2, (height-1)/2)
# Incorrect - manual calculation might miss the -1
center_x = width / 2 # Wrong!
center_y = height / 2 # Wrong!
- For bounding boxes:
# Correct - using helper function
from albumentations.augmentations.geometric.functional import center_bbox
center_x, center_y = center_bbox(image_shape) # Returns (width/2, height/2)
# Incorrect - using wrong center calculation
center_x, center_y = center(image_shape) # Wrong for bboxes!
This small difference is crucial for pixel-perfect accuracy. Always use the appropriate helper functions:
center()
for image, mask, and keypoint transformationscenter_bbox()
for bounding box transformations
Serialization Compatibility¶
- Ensure transforms work with both tuples and lists for range parameters
- Test serialization/deserialization with JSON and YAML formats
Documentation¶
Docstrings¶
- Use Google-style docstrings
- Include type information, parameter descriptions, and examples:
def transform(self, image: np.ndarray) -> np.ndarray:
"""Apply brightness transformation to the image.
Args:
image: Input image in RGB format.
Returns:
Transformed image.
Examples:
>>> transform = Brightness(brightness_range=(-0.2, 0.2))
>>> transformed = transform(image=image)
"""
Comments¶
- Add comments for complex logic
- Explain why, not what (the code shows what)
- Keep comments up to date with code changes
Updating Transform Documentation¶
When adding a new transform or modifying the targets of an existing one, you must update the transforms documentation in the README:
- Generate the updated documentation by running:
-
This will output a formatted list of all transforms and their supported targets
-
Update the relevant section in README.md with the new information
-
Ensure the documentation accurately reflects which targets (image, mask, bboxes, keypoints, etc.) are supported by each transform
This helps maintain accurate and up-to-date documentation about transform capabilities.
Testing¶
Test Coverage¶
- Write tests for all new functionality
- Include edge cases and error conditions
- Ensure reproducibility with fixed random seeds
Test Organization¶
- Place tests in the appropriate module under
tests/
- Follow existing test patterns and naming conventions
- Use pytest fixtures when appropriate
Code Review Guidelines¶
Before submitting your PR:
- Run all tests
- Run pre-commit hooks
- Check type hints
- Update documentation if needed
- Ensure code follows these guidelines
Getting Help¶
If you have questions about these guidelines:
- Join our Discord community
- Open a GitHub issue
- Ask in your pull request