Composition API (core.composition)¶
class BaseCompose
(transforms, p, mask_interpolation=None, seed=None, save_applied_params=False)
[view source on GitHub] ¶
Base class for composing multiple transforms together.
This class serves as a foundation for creating compositions of transforms in the Albumentations library. It provides basic functionality for managing a sequence of transforms and applying them to data.
Attributes:
Name | Type | Description |
---|---|---|
transforms | List[TransformType] | A list of transforms to be applied. |
p | float | Probability of applying the compose. Should be in the range [0, 1]. |
replay_mode | bool | If True, the compose is in replay mode. |
_additional_targets | Dict[str, str] | Additional targets for transforms. |
_available_keys | Set[str] | Set of available keys for data. |
processors | Dict[str, Union[BboxProcessor, KeypointsProcessor]] | Processors for specific data types. |
Parameters:
Name | Type | Description |
---|---|---|
transforms | TransformsSeqType | A sequence of transforms to compose. |
p | float | Probability of applying the compose. |
Exceptions:
Type | Description |
---|---|
ValueError | If an invalid additional target is specified. |
Note
- Subclasses should implement the call method to define how the composition is applied to data.
- The class supports serialization and deserialization of transforms.
- It provides methods for adding targets, setting deterministic behavior, and checking data validity post-transform.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/core/composition.py
class BaseCompose(Serializable):
"""Base class for composing multiple transforms together.
This class serves as a foundation for creating compositions of transforms
in the Albumentations library. It provides basic functionality for
managing a sequence of transforms and applying them to data.
Attributes:
transforms (List[TransformType]): A list of transforms to be applied.
p (float): Probability of applying the compose. Should be in the range [0, 1].
replay_mode (bool): If True, the compose is in replay mode.
_additional_targets (Dict[str, str]): Additional targets for transforms.
_available_keys (Set[str]): Set of available keys for data.
processors (Dict[str, Union[BboxProcessor, KeypointsProcessor]]): Processors for specific data types.
Args:
transforms (TransformsSeqType): A sequence of transforms to compose.
p (float): Probability of applying the compose.
Raises:
ValueError: If an invalid additional target is specified.
Note:
- Subclasses should implement the __call__ method to define how
the composition is applied to data.
- The class supports serialization and deserialization of transforms.
- It provides methods for adding targets, setting deterministic behavior,
and checking data validity post-transform.
"""
_transforms_dict: dict[int, BasicTransform] | None = None
check_each_transform: tuple[DataProcessor, ...] | None = None
main_compose: bool = True
def __init__(
self,
transforms: TransformsSeqType,
p: float,
mask_interpolation: int | None = None,
seed: int | None = None,
save_applied_params: bool = False,
):
if isinstance(transforms, (BaseCompose, BasicTransform)):
warnings.warn(
"transforms is single transform, but a sequence is expected! Transform will be wrapped into list.",
stacklevel=2,
)
transforms = [transforms]
self.transforms = transforms
self.p = p
self.replay_mode = False
self._additional_targets: dict[str, str] = {}
self._available_keys: set[str] = set()
self.processors: dict[str, BboxProcessor | KeypointsProcessor] = {}
self._set_keys()
self.set_mask_interpolation(mask_interpolation)
self.seed = seed
self.random_generator = np.random.default_rng(seed)
self.py_random = random.Random(seed)
self.set_random_seed(seed)
self.save_applied_params = save_applied_params
def _track_transform_params(self, transform: TransformType, data: dict[str, Any]) -> None:
"""Track transform parameters if tracking is enabled."""
if "applied_transforms" in data and hasattr(transform, "params") and transform.params:
data["applied_transforms"].append((transform.__class__.__name__, transform.params.copy()))
def set_random_state(
self,
random_generator: np.random.Generator,
py_random: random.Random,
) -> None:
"""Set random state directly from generators.
Args:
random_generator: numpy random generator to use
py_random: python random generator to use
"""
self.random_generator = random_generator
self.py_random = py_random
# Propagate both random states to all transforms
for transform in self.transforms:
if isinstance(transform, (BasicTransform, BaseCompose)):
transform.set_random_state(random_generator, py_random)
def set_random_seed(self, seed: int | None) -> None:
"""Set random state from seed.
Args:
seed: Random seed to use
"""
self.seed = seed
self.random_generator = np.random.default_rng(seed)
self.py_random = random.Random(seed)
# Propagate seed to all transforms
for transform in self.transforms:
if isinstance(transform, (BasicTransform, BaseCompose)):
transform.set_random_seed(seed)
def set_mask_interpolation(self, mask_interpolation: int | None) -> None:
self.mask_interpolation = mask_interpolation
self._set_mask_interpolation_recursive(self.transforms)
def _set_mask_interpolation_recursive(self, transforms: TransformsSeqType) -> None:
for transform in transforms:
if isinstance(transform, BasicTransform):
if hasattr(transform, "mask_interpolation") and self.mask_interpolation is not None:
transform.mask_interpolation = self.mask_interpolation
elif isinstance(transform, BaseCompose):
transform.set_mask_interpolation(self.mask_interpolation)
def __iter__(self) -> Iterator[TransformType]:
return iter(self.transforms)
def __len__(self) -> int:
return len(self.transforms)
def __call__(self, *args: Any, **data: Any) -> dict[str, Any]:
raise NotImplementedError
def __getitem__(self, item: int) -> TransformType:
return self.transforms[item]
def __repr__(self) -> str:
return self.indented_repr()
@property
def additional_targets(self) -> dict[str, str]:
return self._additional_targets
@property
def available_keys(self) -> set[str]:
return self._available_keys
def indented_repr(self, indent: int = REPR_INDENT_STEP) -> str:
args = {k: v for k, v in self.to_dict_private().items() if not (k.startswith("__") or k == "transforms")}
repr_string = self.__class__.__name__ + "(["
for t in self.transforms:
repr_string += "\n"
t_repr = t.indented_repr(indent + REPR_INDENT_STEP) if hasattr(t, "indented_repr") else repr(t)
repr_string += " " * indent + t_repr + ","
repr_string += "\n" + " " * (indent - REPR_INDENT_STEP) + f"], {format_args(args)})"
return repr_string
@classmethod
def get_class_fullname(cls) -> str:
return get_shortest_class_fullname(cls)
@classmethod
def is_serializable(cls) -> bool:
return True
def to_dict_private(self) -> dict[str, Any]:
return {
"__class_fullname__": self.get_class_fullname(),
"p": self.p,
"transforms": [t.to_dict_private() for t in self.transforms],
}
def get_dict_with_id(self) -> dict[str, Any]:
return {
"__class_fullname__": self.get_class_fullname(),
"id": id(self),
"params": None,
"transforms": [t.get_dict_with_id() for t in self.transforms],
}
def add_targets(self, additional_targets: dict[str, str] | None) -> None:
if additional_targets:
for k, v in additional_targets.items():
if k in self._additional_targets and v != self._additional_targets[k]:
raise ValueError(
f"Trying to overwrite existed additional targets. "
f"Key={k} Exists={self._additional_targets[k]} New value: {v}",
)
self._additional_targets.update(additional_targets)
for t in self.transforms:
t.add_targets(additional_targets)
for proc in self.processors.values():
proc.add_targets(additional_targets)
self._set_keys()
def _set_keys(self) -> None:
"""Set _available_keys"""
self._available_keys.update(self._additional_targets.keys())
for t in self.transforms:
self._available_keys.update(t.available_keys)
if hasattr(t, "targets_as_params"):
self._available_keys.update(t.targets_as_params)
if self.processors:
self._available_keys.update(["labels"])
for proc in self.processors.values():
if proc.default_data_name not in self._available_keys: # if no transform to process this data
warnings.warn(
f"Got processor for {proc.default_data_name}, but no transform to process it.",
stacklevel=2,
)
self._available_keys.update(proc.data_fields)
if proc.params.label_fields:
self._available_keys.update(proc.params.label_fields)
def set_deterministic(self, flag: bool, save_key: str = "replay") -> None:
for t in self.transforms:
t.set_deterministic(flag, save_key)
def check_data_post_transform(self, data: dict[str, Any]) -> dict[str, Any]:
"""Check and filter data after transformation.
Args:
data: Dictionary containing transformed data
Returns:
Filtered data dictionary
"""
if self.check_each_transform:
shape = get_shape(data)
for proc in self.check_each_transform:
for data_name, data_value in data.items():
if data_name in proc.data_fields or (
data_name in self._additional_targets
and self._additional_targets[data_name] in proc.data_fields
):
data[data_name] = proc.filter(data_value, shape)
return data
class Compose
(transforms, bbox_params=None, keypoint_params=None, additional_targets=None, p=1.0, is_check_shapes=True, strict=True, mask_interpolation=None, seed=None, save_applied_params=False)
[view source on GitHub] ¶
Compose multiple transforms together and apply them sequentially to input data.
This class allows you to chain multiple image augmentation transforms and apply them in a specified order. It also handles bounding box and keypoint transformations if the appropriate parameters are provided.
Parameters:
Name | Type | Description |
---|---|---|
transforms | List[Union[BasicTransform, BaseCompose]] | A list of transforms to apply. |
bbox_params | Union[dict, BboxParams, None] | Parameters for bounding box transforms. Can be a dict of params or a BboxParams object. Default is None. |
keypoint_params | Union[dict, KeypointParams, None] | Parameters for keypoint transforms. Can be a dict of params or a KeypointParams object. Default is None. |
additional_targets | Dict[str, str] | A dictionary mapping additional target names to their types. For example, {'image2': 'image'}. Default is None. |
p | float | Probability of applying all transforms. Should be in range [0, 1]. Default is 1.0. |
is_check_shapes | bool | If True, checks consistency of shapes for image/mask/masks on each call. Disable only if you are sure about your data consistency. Default is True. |
strict | bool | If True, raises an error on unknown input keys. If False, ignores them. Default is True. |
mask_interpolation | int | Interpolation method for mask transforms. When defined, it overrides the interpolation method specified in individual transforms. Default is None. |
seed | int | Random seed. Default is None. |
save_applied_params | bool | If True, saves the applied parameters of each transform. Default is False. You will need to use the |
Examples:
>>> import albumentations as A
>>> transform = A.Compose([
... A.RandomCrop(width=256, height=256),
... A.HorizontalFlip(p=0.5),
... A.RandomBrightnessContrast(p=0.2),
... ], seed=42)
>>> transformed = transform(image=image)
Note
- The class checks the validity of input data and shapes if is_check_args and is_check_shapes are True.
- When bbox_params or keypoint_params are provided, it sets up the corresponding processors.
- The transform can handle additional targets specified in the additional_targets dictionary.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/core/composition.py
class Compose(BaseCompose, HubMixin):
"""Compose multiple transforms together and apply them sequentially to input data.
This class allows you to chain multiple image augmentation transforms and apply them
in a specified order. It also handles bounding box and keypoint transformations if
the appropriate parameters are provided.
Args:
transforms (List[Union[BasicTransform, BaseCompose]]): A list of transforms to apply.
bbox_params (Union[dict, BboxParams, None]): Parameters for bounding box transforms.
Can be a dict of params or a BboxParams object. Default is None.
keypoint_params (Union[dict, KeypointParams, None]): Parameters for keypoint transforms.
Can be a dict of params or a KeypointParams object. Default is None.
additional_targets (Dict[str, str], optional): A dictionary mapping additional target names
to their types. For example, {'image2': 'image'}. Default is None.
p (float): Probability of applying all transforms. Should be in range [0, 1]. Default is 1.0.
is_check_shapes (bool): If True, checks consistency of shapes for image/mask/masks on each call.
Disable only if you are sure about your data consistency. Default is True.
strict (bool): If True, raises an error on unknown input keys. If False, ignores them. Default is True.
mask_interpolation (int, optional): Interpolation method for mask transforms. When defined,
it overrides the interpolation method specified in individual transforms. Default is None.
seed (int, optional): Random seed. Default is None.
save_applied_params (bool): If True, saves the applied parameters of each transform. Default is False.
You will need to use the `applied_transforms` key in the output dictionary to access the parameters.
Example:
>>> import albumentations as A
>>> transform = A.Compose([
... A.RandomCrop(width=256, height=256),
... A.HorizontalFlip(p=0.5),
... A.RandomBrightnessContrast(p=0.2),
... ], seed=42)
>>> transformed = transform(image=image)
Note:
- The class checks the validity of input data and shapes if is_check_args and is_check_shapes are True.
- When bbox_params or keypoint_params are provided, it sets up the corresponding processors.
- The transform can handle additional targets specified in the additional_targets dictionary.
"""
def __init__(
self,
transforms: TransformsSeqType,
bbox_params: dict[str, Any] | BboxParams | None = None,
keypoint_params: dict[str, Any] | KeypointParams | None = None,
additional_targets: dict[str, str] | None = None,
p: float = 1.0,
is_check_shapes: bool = True,
strict: bool = True,
mask_interpolation: int | None = None,
seed: int | None = None,
save_applied_params: bool = False,
):
super().__init__(
transforms=transforms,
p=p,
mask_interpolation=mask_interpolation,
seed=seed,
save_applied_params=save_applied_params,
)
if bbox_params:
if isinstance(bbox_params, dict):
b_params = BboxParams(**bbox_params)
elif isinstance(bbox_params, BboxParams):
b_params = bbox_params
else:
msg = "unknown format of bbox_params, please use `dict` or `BboxParams`"
raise ValueError(msg)
self.processors["bboxes"] = BboxProcessor(b_params)
if keypoint_params:
if isinstance(keypoint_params, dict):
k_params = KeypointParams(**keypoint_params)
elif isinstance(keypoint_params, KeypointParams):
k_params = keypoint_params
else:
msg = "unknown format of keypoint_params, please use `dict` or `KeypointParams`"
raise ValueError(msg)
self.processors["keypoints"] = KeypointsProcessor(k_params)
for proc in self.processors.values():
proc.ensure_transforms_valid(self.transforms)
self.add_targets(additional_targets)
if not self.transforms: # if no transforms -> do nothing, all keys will be available
self._available_keys.update(AVAILABLE_KEYS)
self.is_check_args = True
self.strict = strict
self.is_check_shapes = is_check_shapes
self.check_each_transform = tuple( # processors that checks after each transform
proc for proc in self.processors.values() if getattr(proc.params, "check_each_transform", False)
)
self._set_check_args_for_transforms(self.transforms)
self._set_processors_for_transforms(self.transforms)
self.save_applied_params = save_applied_params
self._images_was_list = False
self._masks_was_list = False
def _set_processors_for_transforms(self, transforms: TransformsSeqType) -> None:
for transform in transforms:
if isinstance(transform, BasicTransform):
if hasattr(transform, "set_processors"):
transform.set_processors(self.processors)
elif isinstance(transform, BaseCompose):
self._set_processors_for_transforms(transform.transforms)
def _set_check_args_for_transforms(self, transforms: TransformsSeqType) -> None:
for transform in transforms:
if isinstance(transform, BaseCompose):
self._set_check_args_for_transforms(transform.transforms)
transform.check_each_transform = self.check_each_transform
transform.processors = self.processors
if isinstance(transform, Compose):
transform.disable_check_args_private()
def disable_check_args_private(self) -> None:
self.is_check_args = False
self.strict = False
self.main_compose = False
def __call__(self, *args: Any, force_apply: bool = False, **data: Any) -> dict[str, Any]:
if args:
msg = "You have to pass data to augmentations as named arguments, for example: aug(image=image)"
raise KeyError(msg)
if not isinstance(force_apply, (bool, int)):
msg = "force_apply must have bool or int type"
raise TypeError(msg)
# Initialize applied_transforms only in top-level Compose if requested
if self.save_applied_params and self.main_compose:
data["applied_transforms"] = []
need_to_run = force_apply or self.py_random.random() < self.p
if not need_to_run:
return data
self.preprocess(data)
for t in self.transforms:
data = t(**data)
self._track_transform_params(t, data)
data = self.check_data_post_transform(data)
return self.postprocess(data)
def preprocess(self, data: Any) -> None:
"""Preprocess input data before applying transforms."""
self._validate_data(data)
self._preprocess_processors(data)
self._preprocess_arrays(data)
def _validate_data(self, data: dict[str, Any]) -> None:
"""Validate input data keys and arguments."""
if not self.strict:
return
for data_name in data:
if not self._is_valid_key(data_name):
raise ValueError(f"Key {data_name} is not in available keys.")
if self.is_check_args:
self._check_args(**data)
def _is_valid_key(self, key: str) -> bool:
"""Check if the key is valid for processing."""
return key in self._available_keys or key in MASK_KEYS or key in IMAGE_KEYS or key == "applied_transforms"
def _preprocess_processors(self, data: dict[str, Any]) -> None:
"""Run preprocessors if this is the main compose."""
if not self.main_compose:
return
for processor in self.processors.values():
processor.ensure_data_valid(data)
for processor in self.processors.values():
processor.preprocess(data)
def _preprocess_arrays(self, data: dict[str, Any]) -> None:
"""Convert lists to numpy arrays for images and masks."""
self._preprocess_images(data)
self._preprocess_masks(data)
def _preprocess_images(self, data: dict[str, Any]) -> None:
"""Convert image lists to numpy arrays."""
if "images" not in data:
return
if isinstance(data["images"], (list, tuple)):
self._images_was_list = True
data["images"] = np.stack(data["images"])
else:
self._images_was_list = False
def _preprocess_masks(self, data: dict[str, Any]) -> None:
"""Convert mask lists to numpy arrays."""
if "masks" not in data:
return
if isinstance(data["masks"], (list, tuple)):
self._masks_was_list = True
data["masks"] = np.stack(data["masks"])
else:
self._masks_was_list = False
def postprocess(self, data: dict[str, Any]) -> dict[str, Any]:
if self.main_compose:
for p in self.processors.values():
p.postprocess(data)
# Convert back to list if original input was a list
if "images" in data and self._images_was_list:
data["images"] = list(data["images"])
if "masks" in data and self._masks_was_list:
data["masks"] = list(data["masks"])
return data
def to_dict_private(self) -> dict[str, Any]:
dictionary = super().to_dict_private()
bbox_processor = self.processors.get("bboxes")
keypoints_processor = self.processors.get("keypoints")
dictionary.update(
{
"bbox_params": bbox_processor.params.to_dict_private() if bbox_processor else None,
"keypoint_params": (keypoints_processor.params.to_dict_private() if keypoints_processor else None),
"additional_targets": self.additional_targets,
"is_check_shapes": self.is_check_shapes,
},
)
return dictionary
def get_dict_with_id(self) -> dict[str, Any]:
dictionary = super().get_dict_with_id()
bbox_processor = self.processors.get("bboxes")
keypoints_processor = self.processors.get("keypoints")
dictionary.update(
{
"bbox_params": bbox_processor.params.to_dict_private() if bbox_processor else None,
"keypoint_params": (keypoints_processor.params.to_dict_private() if keypoints_processor else None),
"additional_targets": self.additional_targets,
"params": None,
"is_check_shapes": self.is_check_shapes,
},
)
return dictionary
@staticmethod
def _check_single_data(data_name: str, data: Any) -> tuple[int, int]:
if not isinstance(data, np.ndarray):
raise TypeError(f"{data_name} must be numpy array type")
return data.shape[:2]
@staticmethod
def _check_masks_data(data_name: str, data: Any) -> tuple[int, int]:
"""Check masks data format and return shape.
Args:
data_name: Name of the data field being checked
data: Input data in one of these formats:
- List of numpy arrays, each of shape (H, W) or (H, W, C)
- Numpy array of shape (N, H, W) or (N, H, W, C)
Returns:
tuple: (height, width) of the first mask
Raises:
TypeError: If data format is invalid
"""
if isinstance(data, np.ndarray):
if data.ndim not in [3, 4]: # (N,H,W) or (N,H,W,C)
raise TypeError(f"{data_name} as numpy array must be 3D or 4D")
return data.shape[1:3] # Return (H,W)
if isinstance(data, (list, tuple)):
if not data:
raise ValueError(f"{data_name} cannot be empty")
if not all(isinstance(m, np.ndarray) for m in data):
raise TypeError(f"All elements in {data_name} must be numpy arrays")
if any(m.ndim not in [2, 3] for m in data):
raise TypeError(f"All masks in {data_name} must be 2D or 3D numpy arrays")
return data[0].shape[:2]
raise TypeError(f"{data_name} must be either a numpy array or a sequence of numpy arrays")
@staticmethod
def _check_multi_data(data_name: str, data: Any) -> tuple[int, int]:
"""Check multi-image data format and return shape.
Args:
data_name: Name of the data field being checked
data: Input data in one of these formats:
- List-like of numpy arrays
- Numpy array of shape (N, H, W, C) or (N, H, W)
Returns:
tuple: (height, width) of the first image
Raises:
TypeError: If data format is invalid
"""
if isinstance(data, np.ndarray):
if data.ndim not in {3, 4}: # (N,H,W) or (N,H,W,C)
raise TypeError(f"{data_name} as numpy array must be 3D or 4D")
return data.shape[1:3] # Return (H,W)
if not isinstance(data, Sequence) or not isinstance(data[0], np.ndarray):
raise TypeError(f"{data_name} must be either a numpy array or a list of numpy arrays")
return data[0].shape[:2]
@staticmethod
def _check_bbox_keypoint_params(internal_data_name: str, processors: dict[str, Any]) -> None:
if internal_data_name in CHECK_BBOX_PARAM and processors.get("bboxes") is None:
raise ValueError("bbox_params must be specified for bbox transformations")
if internal_data_name in CHECK_KEYPOINTS_PARAM and processors.get("keypoints") is None:
raise ValueError("keypoints_params must be specified for keypoint transformations")
@staticmethod
def _check_shapes(shapes: list[tuple[int, ...]], is_check_shapes: bool) -> None:
if is_check_shapes and shapes and shapes.count(shapes[0]) != len(shapes):
raise ValueError(
"Height and Width of image, mask or masks should be equal. You can disable shapes check "
"by setting a parameter is_check_shapes=False of Compose class (do it only if you are sure "
"about your data consistency).",
)
def _check_args(self, **kwargs: Any) -> None:
shapes = [] # For H,W checks
volume_shapes = [] # For D,H,W checks
for data_name, data in kwargs.items():
internal_name = self._additional_targets.get(data_name, data_name)
# For CHECKED_SINGLE, we must validate even if None
if internal_name in CHECKED_SINGLE:
if not isinstance(data, np.ndarray):
raise TypeError(f"{data_name} must be numpy array type")
shapes.append(data.shape[:2])
continue
# Skip empty data or non-array/list inputs for other types
if data is None:
continue
if not isinstance(data, (np.ndarray, list)):
continue
self._check_bbox_keypoint_params(internal_name, self.processors)
shape = self._get_data_shape(data_name, internal_name, data)
if shape is None:
continue
# Handle different shape types
if internal_name in CHECKED_VOLUME | CHECKED_MASK3D:
shapes.append(shape[1:3]) # H,W from (D,H,W)
volume_shapes.append(shape[:3]) # D,H,W
elif internal_name in {"volumes", "masks3d"}:
shapes.append(shape[2:4]) # H,W from (N,D,H,W)
volume_shapes.append(shape[1:4]) # D,H,W from (N,D,H,W)
else:
shapes.append(shape[:2]) # H,W
self._check_shape_consistency(shapes, volume_shapes)
def _get_data_shape(self, data_name: str, internal_name: str, data: Any) -> tuple[int, ...] | None:
"""Get shape of data based on its type."""
if internal_name in CHECKED_SINGLE:
if not isinstance(data, np.ndarray):
raise TypeError(f"{data_name} must be numpy array type")
return data.shape
if internal_name in CHECKED_VOLUME:
return self._check_volume_data(data_name, data)
if internal_name in CHECKED_MASK3D:
return self._check_mask3d_data(data_name, data)
if internal_name in CHECKED_MULTI:
if internal_name == "masks":
return self._check_masks_data(data_name, data)
if internal_name in {"volumes", "masks3d"}: # Group these together
if not isinstance(data, np.ndarray):
raise TypeError(f"{data_name} must be numpy array type")
if data.ndim not in {4, 5}: # (N,D,H,W) or (N,D,H,W,C)
raise TypeError(f"{data_name} must be 4D or 5D array")
return data.shape # Return full shape
return self._check_multi_data(data_name, data)
return None
def _check_shape_consistency(self, shapes: list[tuple[int, ...]], volume_shapes: list[tuple[int, ...]]) -> None:
"""Check consistency of shapes."""
# Check H,W consistency
self._check_shapes(shapes, self.is_check_shapes)
# Check D,H,W consistency for volumes and 3D masks
if self.is_check_shapes and volume_shapes and volume_shapes.count(volume_shapes[0]) != len(volume_shapes):
raise ValueError(
"Depth, Height and Width of volume, mask3d, volumes and masks3d should be equal. "
"You can disable shapes check by setting is_check_shapes=False.",
)
@staticmethod
def _check_volume_data(data_name: str, data: np.ndarray) -> tuple[int, int, int]:
if data.ndim not in {3, 4}: # (D,H,W) or (D,H,W,C)
raise TypeError(f"{data_name} must be 3D or 4D array")
return data.shape[:3] # Return (D,H,W)
@staticmethod
def _check_volumes_data(data_name: str, data: np.ndarray) -> tuple[int, int, int]:
if data.ndim not in {4, 5}: # (N,D,H,W) or (N,D,H,W,C)
raise TypeError(f"{data_name} must be 4D or 5D array")
return data.shape[1:4] # Return (D,H,W)
@staticmethod
def _check_mask3d_data(data_name: str, data: np.ndarray) -> tuple[int, int, int]:
"""Check single volumetric mask data format and return shape."""
if data.ndim not in {3, 4}: # (D,H,W) or (D,H,W,C)
raise TypeError(f"{data_name} must be 3D or 4D array")
return data.shape[:3] # Return (D,H,W)
@staticmethod
def _check_masks3d_data(data_name: str, data: np.ndarray) -> tuple[int, int, int]:
"""Check multiple volumetric masks data format and return shape."""
if data.ndim not in [4, 5]: # (N,D,H,W) or (N,D,H,W,C)
raise TypeError(f"{data_name} must be 4D or 5D array")
return data.shape[1:4] # Return (D,H,W)
class OneOf
(transforms, p=0.5)
[view source on GitHub] ¶
Select one of transforms to apply. Selected transform will be called with force_apply=True
. Transforms probabilities will be normalized to one 1, so in this case transforms probabilities works as weights.
Parameters:
Name | Type | Description |
---|---|---|
transforms | list | list of transformations to compose. |
p | float | probability of applying selected transform. Default: 0.5. |
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/core/composition.py
class OneOf(BaseCompose):
"""Select one of transforms to apply. Selected transform will be called with `force_apply=True`.
Transforms probabilities will be normalized to one 1, so in this case transforms probabilities works as weights.
Args:
transforms (list): list of transformations to compose.
p (float): probability of applying selected transform. Default: 0.5.
"""
def __init__(self, transforms: TransformsSeqType, p: float = 0.5):
super().__init__(transforms=transforms, p=p)
transforms_ps = [t.p for t in self.transforms]
s = sum(transforms_ps)
self.transforms_ps = [t / s for t in transforms_ps]
def __call__(self, *args: Any, force_apply: bool = False, **data: Any) -> dict[str, Any]:
if self.replay_mode:
for t in self.transforms:
data = t(**data)
return data
if self.transforms_ps and (force_apply or self.py_random.random() < self.p):
idx: int = self.random_generator.choice(len(self.transforms), p=self.transforms_ps)
t = self.transforms[idx]
data = t(force_apply=True, **data)
self._track_transform_params(t, data)
return data
class OneOrOther
(first=None, second=None, transforms=None, p=0.5)
[view source on GitHub] ¶
Select one or another transform to apply. Selected transform will be called with force_apply=True
.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/core/composition.py
class OneOrOther(BaseCompose):
"""Select one or another transform to apply. Selected transform will be called with `force_apply=True`."""
def __init__(
self,
first: TransformType | None = None,
second: TransformType | None = None,
transforms: TransformsSeqType | None = None,
p: float = 0.5,
):
if transforms is None:
if first is None or second is None:
msg = "You must set both first and second or set transforms argument."
raise ValueError(msg)
transforms = [first, second]
super().__init__(transforms, p)
if len(self.transforms) != NUM_ONEOF_TRANSFORMS:
warnings.warn("Length of transforms is not equal to 2.", stacklevel=2)
def __call__(self, *args: Any, force_apply: bool = False, **data: Any) -> dict[str, Any]:
if self.replay_mode:
for t in self.transforms:
data = t(**data)
self._track_transform_params(t, data)
return data
if self.py_random.random() < self.p:
return self.transforms[0](force_apply=True, **data)
return self.transforms[-1](force_apply=True, **data)
class RandomOrder
(transforms, n=1, replace=False, p=1)
[view source on GitHub] ¶
Apply a random subset of transforms from the given list in a random order.
The RandomOrder
class allows you to select a specified number of transforms from a list and apply them to the input data in a random order. This is useful for creating more diverse augmentation pipelines where the order of transformations can vary, potentially leading to different results.
Attributes:
Name | Type | Description |
---|---|---|
transforms | TransformsSeqType | A list of transformations to choose from. |
n | int | The number of transforms to apply. If |
replace | bool | Whether to sample transforms with replacement. If True, the same transform can be selected multiple times. Default is False. |
p | float | Probability of applying the selected transforms. Should be in the range [0, 1]. Default is 1.0. |
Examples:
>>> import albumentations as A
>>> transform = A.RandomOrder([
... A.HorizontalFlip(p=1),
... A.VerticalFlip(p=1),
... A.RandomBrightnessContrast(p=1),
... ], n=2, replace=False, p=0.5)
>>> # This will apply 2 out of the 3 transforms in a random order with 50% probability
Note
- The probabilities of individual transforms are used as weights for sampling.
- When
replace
is True, the same transform can be selected multiple times. - The random order of transforms will not be replayed in
ReplayCompose
.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/core/composition.py
class RandomOrder(SomeOf):
"""Apply a random subset of transforms from the given list in a random order.
The `RandomOrder` class allows you to select a specified number of transforms from a list and apply them
to the input data in a random order. This is useful for creating more diverse augmentation pipelines
where the order of transformations can vary, potentially leading to different results.
Attributes:
transforms (TransformsSeqType): A list of transformations to choose from.
n (int): The number of transforms to apply. If `n` is greater than the number of available transforms
and `replace` is False, `n` will be set to the number of available transforms.
replace (bool): Whether to sample transforms with replacement. If True, the same transform can be
selected multiple times. Default is False.
p (float): Probability of applying the selected transforms. Should be in the range [0, 1]. Default is 1.0.
Example:
>>> import albumentations as A
>>> transform = A.RandomOrder([
... A.HorizontalFlip(p=1),
... A.VerticalFlip(p=1),
... A.RandomBrightnessContrast(p=1),
... ], n=2, replace=False, p=0.5)
>>> # This will apply 2 out of the 3 transforms in a random order with 50% probability
Note:
- The probabilities of individual transforms are used as weights for sampling.
- When `replace` is True, the same transform can be selected multiple times.
- The random order of transforms will not be replayed in `ReplayCompose`.
"""
def __init__(self, transforms: TransformsSeqType, n: int = 1, replace: bool = False, p: float = 1):
super().__init__(transforms=transforms, n=n, replace=replace, p=p)
def _get_idx(self) -> np.ndarray[np.int_]:
return self.random_generator.choice(
len(self.transforms),
size=self.n,
replace=self.replace,
p=self.transforms_ps,
)
class SelectiveChannelTransform
(transforms, channels=(0, 1, 2), p=1.0)
[view source on GitHub] ¶
A transformation class to apply specified transforms to selected channels of an image.
This class extends BaseCompose to allow selective application of transformations to specified image channels. It extracts the selected channels, applies the transformations, and then reinserts the transformed channels back into their original positions in the image.
Parameters:
Name | Type | Description |
---|---|---|
transforms | TransformsSeqType | A sequence of transformations (from Albumentations) to be applied to the specified channels. |
channels | Sequence[int] | A sequence of integers specifying the indices of the channels to which the transforms should be applied. |
p | float | Probability that the transform will be applied; the default is 1.0 (always apply). |
Methods
call(args, *kwargs): Applies the transforms to the image according to the specified channels. The input data should include 'image' key with the image array.
Returns:
Type | Description |
---|---|
dict[str, Any] | The transformed data dictionary, which includes the transformed 'image' key. |
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/core/composition.py
class SelectiveChannelTransform(BaseCompose):
"""A transformation class to apply specified transforms to selected channels of an image.
This class extends BaseCompose to allow selective application of transformations to
specified image channels. It extracts the selected channels, applies the transformations,
and then reinserts the transformed channels back into their original positions in the image.
Parameters:
transforms (TransformsSeqType):
A sequence of transformations (from Albumentations) to be applied to the specified channels.
channels (Sequence[int]):
A sequence of integers specifying the indices of the channels to which the transforms should be applied.
p (float):
Probability that the transform will be applied; the default is 1.0 (always apply).
Methods:
__call__(*args, **kwargs):
Applies the transforms to the image according to the specified channels.
The input data should include 'image' key with the image array.
Returns:
dict[str, Any]: The transformed data dictionary, which includes the transformed 'image' key.
"""
def __init__(
self,
transforms: TransformsSeqType,
channels: Sequence[int] = (0, 1, 2),
p: float = 1.0,
) -> None:
super().__init__(transforms, p)
self.channels = channels
def __call__(self, *args: Any, force_apply: bool = False, **data: Any) -> dict[str, Any]:
if force_apply or self.py_random.random() < self.p:
image = data["image"]
selected_channels = image[:, :, self.channels]
sub_image = np.ascontiguousarray(selected_channels)
for t in self.transforms:
sub_image = t(image=sub_image)["image"]
self._track_transform_params(t, sub_image)
transformed_channels = cv2.split(sub_image)
output_img = image.copy()
for idx, channel in zip(self.channels, transformed_channels):
output_img[:, :, idx] = channel
data["image"] = np.ascontiguousarray(output_img)
return data
class Sequential
(transforms, p=0.5)
[view source on GitHub] ¶
Sequentially applies all transforms to targets.
Note
This transform is not intended to be a replacement for Compose
. Instead, it should be used inside Compose
the same way OneOf
or OneOrOther
are used. For instance, you can combine OneOf
with Sequential
to create an augmentation pipeline that contains multiple sequences of augmentations and applies one randomly chose sequence to input data (see the Example
section for an example definition of such pipeline).
Examples:
>>> import albumentations as A
>>> transform = A.Compose([
>>> A.OneOf([
>>> A.Sequential([
>>> A.HorizontalFlip(p=0.5),
>>> A.ShiftScaleRotate(p=0.5),
>>> ]),
>>> A.Sequential([
>>> A.VerticalFlip(p=0.5),
>>> A.RandomBrightnessContrast(p=0.5),
>>> ]),
>>> ], p=1)
>>> ])
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/core/composition.py
class Sequential(BaseCompose):
"""Sequentially applies all transforms to targets.
Note:
This transform is not intended to be a replacement for `Compose`. Instead, it should be used inside `Compose`
the same way `OneOf` or `OneOrOther` are used. For instance, you can combine `OneOf` with `Sequential` to
create an augmentation pipeline that contains multiple sequences of augmentations and applies one randomly
chose sequence to input data (see the `Example` section for an example definition of such pipeline).
Example:
>>> import albumentations as A
>>> transform = A.Compose([
>>> A.OneOf([
>>> A.Sequential([
>>> A.HorizontalFlip(p=0.5),
>>> A.ShiftScaleRotate(p=0.5),
>>> ]),
>>> A.Sequential([
>>> A.VerticalFlip(p=0.5),
>>> A.RandomBrightnessContrast(p=0.5),
>>> ]),
>>> ], p=1)
>>> ])
"""
def __init__(self, transforms: TransformsSeqType, p: float = 0.5):
super().__init__(transforms, p)
def __call__(self, *args: Any, force_apply: bool = False, **data: Any) -> dict[str, Any]:
if self.replay_mode or force_apply or self.py_random.random() < self.p:
for t in self.transforms:
data = t(**data)
self._track_transform_params(t, data)
data = self.check_data_post_transform(data)
return data
class SomeOf
(transforms, n=1, replace=False, p=1)
[view source on GitHub] ¶
Apply a random subset of transforms from the given list.
This class selects a specified number of transforms from the provided list and applies them to the input data. The selection can be done with or without replacement, allowing for the same transform to be potentially applied multiple times.
Parameters:
Name | Type | Description |
---|---|---|
transforms | List[Union[BasicTransform, BaseCompose]] | A list of transforms to choose from. |
n | int | The number of transforms to apply. If greater than the number of transforms and replace=False, it will be set to the number of transforms. |
replace | bool | Whether to sample transforms with replacement. Default is True. |
p | float | Probability of applying the selected transforms. Should be in the range [0, 1]. Default is 1.0. |
mask_interpolation | int | Interpolation method for mask transforms. When defined, it overrides the interpolation method specified in individual transforms. Default is None. |
Note
- If
n
is greater than the number of transforms andreplace
is False,n
will be set to the number of transforms with a warning. - The probabilities of individual transforms are used as weights for sampling.
- When
replace
is True, the same transform can be selected multiple times.
Examples:
>>> import albumentations as A
>>> transform = A.SomeOf([
... A.HorizontalFlip(p=1),
... A.VerticalFlip(p=1),
... A.RandomBrightnessContrast(p=1),
... ], n=2, replace=False, p=0.5)
>>> # This will apply 2 out of the 3 transforms with 50% probability
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/core/composition.py
class SomeOf(BaseCompose):
"""Apply a random subset of transforms from the given list.
This class selects a specified number of transforms from the provided list
and applies them to the input data. The selection can be done with or without
replacement, allowing for the same transform to be potentially applied multiple times.
Args:
transforms (List[Union[BasicTransform, BaseCompose]]): A list of transforms to choose from.
n (int): The number of transforms to apply. If greater than the number of
transforms and replace=False, it will be set to the number of transforms.
replace (bool): Whether to sample transforms with replacement. Default is True.
p (float): Probability of applying the selected transforms. Should be in the range [0, 1].
Default is 1.0.
mask_interpolation (int, optional): Interpolation method for mask transforms.
When defined, it overrides the interpolation method
specified in individual transforms. Default is None.
Note:
- If `n` is greater than the number of transforms and `replace` is False,
`n` will be set to the number of transforms with a warning.
- The probabilities of individual transforms are used as weights for sampling.
- When `replace` is True, the same transform can be selected multiple times.
Example:
>>> import albumentations as A
>>> transform = A.SomeOf([
... A.HorizontalFlip(p=1),
... A.VerticalFlip(p=1),
... A.RandomBrightnessContrast(p=1),
... ], n=2, replace=False, p=0.5)
>>> # This will apply 2 out of the 3 transforms with 50% probability
"""
def __init__(self, transforms: TransformsSeqType, n: int = 1, replace: bool = False, p: float = 1):
super().__init__(transforms, p)
self.n = n
if not replace and n > len(self.transforms):
self.n = len(self.transforms)
warnings.warn(
f"`n` is greater than number of transforms. `n` will be set to {self.n}.",
UserWarning,
stacklevel=2,
)
self.replace = replace
transforms_ps = [t.p for t in self.transforms]
s = sum(transforms_ps)
self.transforms_ps = [t / s for t in transforms_ps]
def __call__(self, *arg: Any, force_apply: bool = False, **data: Any) -> dict[str, Any]:
if self.replay_mode:
for t in self.transforms:
data = t(**data)
data = self.check_data_post_transform(data)
return data
if self.transforms_ps and (force_apply or self.py_random.random() < self.p):
for i in self._get_idx():
t = self.transforms[i]
data = t(force_apply=True, **data)
self._track_transform_params(t, data)
data = self.check_data_post_transform(data)
return data
def _get_idx(self) -> np.ndarray[np.int_]:
idx = self.random_generator.choice(
len(self.transforms),
size=self.n,
replace=self.replace,
p=self.transforms_ps,
)
idx.sort()
return idx
def to_dict_private(self) -> dict[str, Any]:
dictionary = super().to_dict_private()
dictionary.update({"n": self.n, "replace": self.replace})
return dictionary