Skip to content

3D (Volumetric) transforms (augmentations.transforms3d.transforms)

class BaseCropAndPad3D (pad_if_needed, fill, fill_mask, pad_position, p=1.0) [view source on GitHub]

Base class for 3D transforms that need both cropping and padding.

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/transforms3d/transforms.py
Python
class BaseCropAndPad3D(Transform3D):
    """Base class for 3D transforms that need both cropping and padding."""

    _targets = (Targets.VOLUME, Targets.MASK3D, Targets.KEYPOINTS)

    class InitSchema(Transform3D.InitSchema):
        pad_if_needed: bool
        fill: ColorType
        fill_mask: ColorType
        pad_position: Literal["center", "random"]

    def __init__(
        self,
        pad_if_needed: bool,
        fill: ColorType,
        fill_mask: ColorType,
        pad_position: Literal["center", "random"],
        p: float = 1.0,
    ):
        super().__init__(p=p)
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.fill_mask = fill_mask
        self.pad_position = pad_position

    def _random_pad(self, pad: int) -> tuple[int, int]:
        """Helper function to calculate random padding for one dimension."""
        if pad > 0:
            pad_start = self.py_random.randint(0, pad)
            pad_end = pad - pad_start
        else:
            pad_start = pad_end = 0
        return pad_start, pad_end

    def _center_pad(self, pad: int) -> tuple[int, int]:
        """Helper function to calculate center padding for one dimension."""
        pad_start = pad // 2
        pad_end = pad - pad_start
        return pad_start, pad_end

    def _get_pad_params(
        self,
        image_shape: tuple[int, int, int],
        target_shape: tuple[int, int, int],
    ) -> dict[str, Any] | None:
        """Calculate padding parameters if needed for 3D volumes."""
        if not self.pad_if_needed:
            return None

        z, h, w = image_shape
        target_z, target_h, target_w = target_shape

        # Calculate total padding needed for each dimension
        z_pad = max(0, target_z - z)
        h_pad = max(0, target_h - h)
        w_pad = max(0, target_w - w)

        if z_pad == 0 and h_pad == 0 and w_pad == 0:
            return None

        # For center padding, split equally
        if self.pad_position == "center":
            z_front, z_back = self._center_pad(z_pad)
            h_top, h_bottom = self._center_pad(h_pad)
            w_left, w_right = self._center_pad(w_pad)
        # For random padding, randomly distribute the padding
        else:  # random
            z_front, z_back = self._random_pad(z_pad)
            h_top, h_bottom = self._random_pad(h_pad)
            w_left, w_right = self._random_pad(w_pad)

        return {
            "pad_front": z_front,
            "pad_back": z_back,
            "pad_top": h_top,
            "pad_bottom": h_bottom,
            "pad_left": w_left,
            "pad_right": w_right,
        }

    def apply_to_volume(
        self,
        volume: np.ndarray,
        crop_coords: tuple[int, int, int, int, int, int],
        pad_params: dict[str, int] | None,
        **params: Any,
    ) -> np.ndarray:
        # First crop
        cropped = f3d.crop3d(volume, crop_coords)

        # Then pad if needed
        if pad_params is not None:
            padding = (
                pad_params["pad_front"],
                pad_params["pad_back"],
                pad_params["pad_top"],
                pad_params["pad_bottom"],
                pad_params["pad_left"],
                pad_params["pad_right"],
            )
            return f3d.pad_3d_with_params(
                cropped,
                padding=padding,
                value=cast(ColorType, self.fill),
            )

        return cropped

    def apply_to_mask3d(
        self,
        mask3d: np.ndarray,
        crop_coords: tuple[int, int, int, int, int, int],
        pad_params: dict[str, int] | None,
        **params: Any,
    ) -> np.ndarray:
        # First crop
        cropped = f3d.crop3d(mask3d, crop_coords)

        # Then pad if needed
        if pad_params is not None:
            padding = (
                pad_params["pad_front"],
                pad_params["pad_back"],
                pad_params["pad_top"],
                pad_params["pad_bottom"],
                pad_params["pad_left"],
                pad_params["pad_right"],
            )
            return f3d.pad_3d_with_params(
                cropped,
                padding=padding,
                value=cast(ColorType, self.fill_mask),
            )

        return cropped

    def apply_to_keypoints(
        self,
        keypoints: np.ndarray,
        crop_coords: tuple[int, int, int, int, int, int],
        pad_params: dict[str, int] | None,
        **params: Any,
    ) -> np.ndarray:
        # Extract crop start coordinates (z1,y1,x1)
        crop_z1, _, crop_y1, _, crop_x1, _ = crop_coords

        # Initialize shift vector with negative crop coordinates
        shift = np.array(
            [
                -crop_x1,  # X shift
                -crop_y1,  # Y shift
                -crop_z1,  # Z shift
            ],
        )

        # Add padding shift if needed
        if pad_params is not None:
            shift += np.array(
                [
                    pad_params["pad_left"],  # X shift
                    pad_params["pad_top"],  # Y shift
                    pad_params["pad_front"],  # Z shift
                ],
            )

        # Apply combined shift
        return fgeometric.shift_keypoints(keypoints, shift)

class BasePad3D (fill=0, fill_mask=0, p=1.0) [view source on GitHub]

Base class for 3D padding transforms.

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/transforms3d/transforms.py
Python
class BasePad3D(Transform3D):
    """Base class for 3D padding transforms."""

    _targets = (Targets.VOLUME, Targets.MASK3D, Targets.KEYPOINTS)

    class InitSchema(Transform3D.InitSchema):
        fill: ColorType
        fill_mask: ColorType

    def __init__(
        self,
        fill: ColorType = 0,
        fill_mask: ColorType = 0,
        p: float = 1.0,
    ):
        super().__init__(p=p)
        self.fill = fill
        self.fill_mask = fill_mask

    def apply_to_volume(
        self,
        volume: np.ndarray,
        padding: tuple[int, int, int, int, int, int],
        **params: Any,
    ) -> np.ndarray:
        if padding == (0, 0, 0, 0, 0, 0):
            return volume
        return f3d.pad_3d_with_params(
            volume=volume,
            padding=padding,
            value=cast(ColorType, self.fill),
        )

    def apply_to_mask3d(
        self,
        mask3d: np.ndarray,
        padding: tuple[int, int, int, int, int, int],
        **params: Any,
    ) -> np.ndarray:
        if padding == (0, 0, 0, 0, 0, 0):
            return mask3d
        return f3d.pad_3d_with_params(
            volume=mask3d,
            padding=padding,
            value=cast(ColorType, self.fill_mask),
        )

    def apply_to_keypoints(self, keypoints: np.ndarray, **params: Any) -> np.ndarray:
        padding = params["padding"]
        shift_vector = np.array([padding[4], padding[2], padding[0]])
        return fgeometric.shift_keypoints(keypoints, shift_vector)

class CenterCrop3D (size, pad_if_needed=False, fill=0, fill_mask=0, p=1.0) [view source on GitHub]

Crop the center of 3D volume.

Parameters:

Name Type Description
size tuple[int, int, int]

Desired output size of the crop in format (depth, height, width)

pad_if_needed bool

Whether to pad if the volume is smaller than desired crop size. Default: False

fill ColorType

Padding value for image if pad_if_needed is True. Default: 0

fill_mask ColorType

Padding value for mask if pad_if_needed is True. Default: 0

p float

probability of applying the transform. Default: 1.0

Targets

volume, mask3d, keypoints

Image types: uint8, float32

Note

If you want to perform cropping only in the XY plane while preserving all slices along the Z axis, consider using CenterCrop instead. CenterCrop will apply the same XY crop to each slice independently, maintaining the full depth of the volume.

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/transforms3d/transforms.py
Python
class CenterCrop3D(BaseCropAndPad3D):
    """Crop the center of 3D volume.

    Args:
        size (tuple[int, int, int]): Desired output size of the crop in format (depth, height, width)
        pad_if_needed (bool): Whether to pad if the volume is smaller than desired crop size. Default: False
        fill (ColorType): Padding value for image if pad_if_needed is True. Default: 0
        fill_mask (ColorType): Padding value for mask if pad_if_needed is True. Default: 0
        p (float): probability of applying the transform. Default: 1.0

    Targets:
        volume, mask3d, keypoints

    Image types:
        uint8, float32

    Note:
        If you want to perform cropping only in the XY plane while preserving all slices along
        the Z axis, consider using CenterCrop instead. CenterCrop will apply the same XY crop
        to each slice independently, maintaining the full depth of the volume.
    """

    class InitSchema(BaseTransformInitSchema):
        size: Annotated[tuple[int, int, int], AfterValidator(check_range_bounds(1, None))]
        pad_if_needed: bool
        fill: ColorType
        fill_mask: ColorType

    def __init__(
        self,
        size: tuple[int, int, int],
        pad_if_needed: bool = False,
        fill: ColorType = 0,
        fill_mask: ColorType = 0,
        p: float = 1.0,
    ):
        super().__init__(
            pad_if_needed=pad_if_needed,
            fill=fill,
            fill_mask=fill_mask,
            pad_position="center",  # Center crop always uses center padding
            p=p,
        )
        self.size = size

    def get_params_dependent_on_data(
        self,
        params: dict[str, Any],
        data: dict[str, Any],
    ) -> dict[str, Any]:
        volume = data["volume"]
        z, h, w = volume.shape[:3]
        target_z, target_h, target_w = self.size

        # Get padding params if needed
        pad_params = self._get_pad_params(
            image_shape=(z, h, w),
            target_shape=self.size,
        )

        # Update dimensions if padding is applied
        if pad_params is not None:
            z = z + pad_params["pad_front"] + pad_params["pad_back"]
            h = h + pad_params["pad_top"] + pad_params["pad_bottom"]
            w = w + pad_params["pad_left"] + pad_params["pad_right"]

        # Validate dimensions after padding
        if z < target_z or h < target_h or w < target_w:
            msg = (
                f"Crop size {self.size} is larger than padded image size ({z}, {h}, {w}). "
                f"This should not happen - please report this as a bug."
            )
            raise ValueError(msg)

        # For CenterCrop3D:
        z_start = (z - target_z) // 2
        h_start = (h - target_h) // 2
        w_start = (w - target_w) // 2

        crop_coords = (
            z_start,
            z_start + target_z,
            h_start,
            h_start + target_h,
            w_start,
            w_start + target_w,
        )

        return {
            "crop_coords": crop_coords,
            "pad_params": pad_params,
        }

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return "size", "pad_if_needed", "fill", "fill_mask"

class CoarseDropout3D (num_holes_range=(1, 1), hole_depth_range=(0.1, 0.2), hole_height_range=(0.1, 0.2), hole_width_range=(0.1, 0.2), fill=0, fill_mask=None, p=0.5) [view source on GitHub]

CoarseDropout3D randomly drops out cuboid regions from a 3D volume and optionally, the corresponding regions in an associated 3D mask, to simulate occlusion and varied object sizes found in real-world volumetric data.

Parameters:

Name Type Description
num_holes_range tuple[int, int]

Range (min, max) for the number of cuboid regions to drop out. Default: (1, 1)

hole_depth_range tuple[float, float]

Range (min, max) for the depth of dropout regions as a fraction of the volume depth (between 0 and 1). Default: (0.1, 0.2)

hole_height_range tuple[float, float]

Range (min, max) for the height of dropout regions as a fraction of the volume height (between 0 and 1). Default: (0.1, 0.2)

hole_width_range tuple[float, float]

Range (min, max) for the width of dropout regions as a fraction of the volume width (between 0 and 1). Default: (0.1, 0.2)

fill ColorType

Value for the dropped voxels. Can be: - int or float: all channels are filled with this value - tuple: tuple of values for each channel Default: 0

fill_mask ColorType | None

Fill value for dropout regions in the 3D mask. If None, mask regions corresponding to volume dropouts are unchanged. Default: None

p float

Probability of applying the transform. Default: 0.5

Targets

volume, mask3d, keypoints

Image types: uint8, float32

Note

  • The actual number and size of dropout regions are randomly chosen within the specified ranges.
  • All values in hole_depth_range, hole_height_range and hole_width_range must be between 0 and 1.
  • If you want to apply dropout only in the XY plane while preserving the full depth dimension, consider using CoarseDropout instead. CoarseDropout will apply the same rectangular dropout to each slice independently, effectively creating cylindrical dropout regions that extend through the entire depth of the volume.

Examples:

Python
>>> import numpy as np
>>> import albumentations as A
>>> volume = np.random.randint(0, 256, (10, 100, 100), dtype=np.uint8)  # (D, H, W)
>>> mask3d = np.random.randint(0, 2, (10, 100, 100), dtype=np.uint8)    # (D, H, W)
>>> aug = A.CoarseDropout3D(
...     num_holes_range=(3, 6),
...     hole_depth_range=(0.1, 0.2),
...     hole_height_range=(0.1, 0.2),
...     hole_width_range=(0.1, 0.2),
...     fill=0,
...     p=1.0
... )
>>> transformed = aug(volume=volume, mask3d=mask3d)
>>> transformed_volume, transformed_mask3d = transformed["volume"], transformed["mask3d"]

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/transforms3d/transforms.py
Python
class CoarseDropout3D(Transform3D):
    """CoarseDropout3D randomly drops out cuboid regions from a 3D volume and optionally,
    the corresponding regions in an associated 3D mask, to simulate occlusion and
    varied object sizes found in real-world volumetric data.

    Args:
        num_holes_range (tuple[int, int]): Range (min, max) for the number of cuboid
            regions to drop out. Default: (1, 1)
        hole_depth_range (tuple[float, float]): Range (min, max) for the depth
            of dropout regions as a fraction of the volume depth (between 0 and 1). Default: (0.1, 0.2)
        hole_height_range (tuple[float, float]): Range (min, max) for the height
            of dropout regions as a fraction of the volume height (between 0 and 1). Default: (0.1, 0.2)
        hole_width_range (tuple[float, float]): Range (min, max) for the width
            of dropout regions as a fraction of the volume width (between 0 and 1). Default: (0.1, 0.2)
        fill (ColorType): Value for the dropped voxels. Can be:
            - int or float: all channels are filled with this value
            - tuple: tuple of values for each channel
            Default: 0
        fill_mask (ColorType | None): Fill value for dropout regions in the 3D mask.
            If None, mask regions corresponding to volume dropouts are unchanged. Default: None
        p (float): Probability of applying the transform. Default: 0.5

    Targets:
        volume, mask3d, keypoints

    Image types:
        uint8, float32

    Note:
        - The actual number and size of dropout regions are randomly chosen within the specified ranges.
        - All values in hole_depth_range, hole_height_range and hole_width_range must be between 0 and 1.
        - If you want to apply dropout only in the XY plane while preserving the full depth dimension,
          consider using CoarseDropout instead. CoarseDropout will apply the same rectangular dropout
          to each slice independently, effectively creating cylindrical dropout regions that extend
          through the entire depth of the volume.

    Example:
        >>> import numpy as np
        >>> import albumentations as A
        >>> volume = np.random.randint(0, 256, (10, 100, 100), dtype=np.uint8)  # (D, H, W)
        >>> mask3d = np.random.randint(0, 2, (10, 100, 100), dtype=np.uint8)    # (D, H, W)
        >>> aug = A.CoarseDropout3D(
        ...     num_holes_range=(3, 6),
        ...     hole_depth_range=(0.1, 0.2),
        ...     hole_height_range=(0.1, 0.2),
        ...     hole_width_range=(0.1, 0.2),
        ...     fill=0,
        ...     p=1.0
        ... )
        >>> transformed = aug(volume=volume, mask3d=mask3d)
        >>> transformed_volume, transformed_mask3d = transformed["volume"], transformed["mask3d"]
    """

    _targets = (Targets.VOLUME, Targets.MASK3D, Targets.KEYPOINTS)

    class InitSchema(Transform3D.InitSchema):
        num_holes_range: Annotated[
            tuple[int, int],
            AfterValidator(check_range_bounds(0, None)),
            AfterValidator(nondecreasing),
        ]
        hole_depth_range: Annotated[
            tuple[float, float],
            AfterValidator(check_range_bounds(0, 1)),
            AfterValidator(nondecreasing),
        ]
        hole_height_range: Annotated[
            tuple[float, float],
            AfterValidator(check_range_bounds(0, 1)),
            AfterValidator(nondecreasing),
        ]
        hole_width_range: Annotated[
            tuple[float, float],
            AfterValidator(check_range_bounds(0, 1)),
            AfterValidator(nondecreasing),
        ]
        fill: ColorType
        fill_mask: ColorType | None

        @staticmethod
        def validate_range(range_value: tuple[float, float], range_name: str) -> None:
            if not 0 <= range_value[0] <= range_value[1] <= 1:
                raise ValueError(
                    f"All values in {range_name} should be in [0, 1] range and first value "
                    f"should be less or equal than the second value. Got: {range_value}",
                )

        @model_validator(mode="after")
        def check_ranges(self) -> Self:
            self.validate_range(self.hole_depth_range, "hole_depth_range")
            self.validate_range(self.hole_height_range, "hole_height_range")
            self.validate_range(self.hole_width_range, "hole_width_range")
            return self

    def __init__(
        self,
        num_holes_range: tuple[int, int] = (1, 1),
        hole_depth_range: tuple[float, float] = (0.1, 0.2),
        hole_height_range: tuple[float, float] = (0.1, 0.2),
        hole_width_range: tuple[float, float] = (0.1, 0.2),
        fill: ColorType = 0,
        fill_mask: ColorType | None = None,
        p: float = 0.5,
    ):
        super().__init__(p=p)
        self.num_holes_range = num_holes_range
        self.hole_depth_range = hole_depth_range
        self.hole_height_range = hole_height_range
        self.hole_width_range = hole_width_range
        self.fill = fill
        self.fill_mask = fill_mask

    def calculate_hole_dimensions(
        self,
        volume_shape: tuple[int, int, int],
        depth_range: tuple[float, float],
        height_range: tuple[float, float],
        width_range: tuple[float, float],
        size: int,
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
        """Calculate random hole dimensions based on the provided ranges."""
        depth, height, width = volume_shape[:3]

        hole_depths = np.maximum(1, np.ceil(depth * self.random_generator.uniform(*depth_range, size=size))).astype(int)
        hole_heights = np.maximum(1, np.ceil(height * self.random_generator.uniform(*height_range, size=size))).astype(
            int,
        )
        hole_widths = np.maximum(1, np.ceil(width * self.random_generator.uniform(*width_range, size=size))).astype(int)

        return hole_depths, hole_heights, hole_widths

    def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
        volume_shape = data["volume"].shape[:3]

        num_holes = self.py_random.randint(*self.num_holes_range)

        hole_depths, hole_heights, hole_widths = self.calculate_hole_dimensions(
            volume_shape,
            self.hole_depth_range,
            self.hole_height_range,
            self.hole_width_range,
            size=num_holes,
        )

        depth, height, width = volume_shape[:3]

        z_min = self.random_generator.integers(0, depth - hole_depths + 1, size=num_holes)
        y_min = self.random_generator.integers(0, height - hole_heights + 1, size=num_holes)
        x_min = self.random_generator.integers(0, width - hole_widths + 1, size=num_holes)
        z_max = z_min + hole_depths
        y_max = y_min + hole_heights
        x_max = x_min + hole_widths

        holes = np.stack([z_min, y_min, x_min, z_max, y_max, x_max], axis=-1)

        return {"holes": holes}

    def apply_to_volume(self, volume: np.ndarray, holes: np.ndarray, **params: Any) -> np.ndarray:
        if holes.size == 0:
            return volume

        return f3d.cutout3d(volume, holes, cast(ColorType, self.fill))

    def apply_to_mask(self, mask: np.ndarray, holes: np.ndarray, **params: Any) -> np.ndarray:
        if self.fill_mask is None or holes.size == 0:
            return mask

        return f3d.cutout3d(mask, holes, cast(ColorType, self.fill_mask))

    def apply_to_keypoints(
        self,
        keypoints: np.ndarray,
        holes: np.ndarray,
        **params: Any,
    ) -> np.ndarray:
        """Remove keypoints that fall within dropout regions."""
        if holes.size == 0:
            return keypoints
        processor = cast(KeypointsProcessor, self.get_processor("keypoints"))

        if processor is None or not processor.params.remove_invisible:
            return keypoints
        return f3d.filter_keypoints_in_holes3d(keypoints, holes)

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return (
            "num_holes_range",
            "hole_depth_range",
            "hole_height_range",
            "hole_width_range",
            "fill",
            "fill_mask",
        )

class CubicSymmetry (p=1.0) [view source on GitHub]

Applies a random cubic symmetry transformation to a 3D volume.

This transform is a 3D extension of D4. While D4 handles the 8 symmetries of a square (4 rotations x 2 reflections), CubicSymmetry handles all 48 symmetries of a cube. Like D4, this transform does not create any interpolation artifacts as it only remaps voxels from one position to another without any interpolation.

The 48 transformations consist of: - 24 rotations (orientation-preserving): * 4 rotations around each face diagonal (6 face diagonals x 4 rotations = 24) - 24 rotoreflections (orientation-reversing): * Reflection through a plane followed by any of the 24 rotations

For a cube, these transformations preserve: - All face centers (6) - All vertex positions (8) - All edge centers (12)

works with 3D volumes and masks of the shape (D, H, W) or (D, H, W, C)

Parameters:

Name Type Description
p float

Probability of applying the transform. Default: 1.0

Targets

volume, mask3d, keypoints

Image types: uint8, float32

Note

  • This transform is particularly useful for data augmentation in 3D medical imaging, crystallography, and voxel-based 3D modeling where the object's orientation is arbitrary.
  • All transformations preserve the object's chirality (handedness) when using pure rotations (indices 0-23) and invert it when using rotoreflections (indices 24-47).

Examples:

Python
>>> import numpy as np
>>> import albumentations as A
>>> volume = np.random.randint(0, 256, (10, 100, 100), dtype=np.uint8)  # (D, H, W)
>>> mask3d = np.random.randint(0, 2, (10, 100, 100), dtype=np.uint8)    # (D, H, W)
>>> transform = A.CubicSymmetry(p=1.0)
>>> transformed = transform(volume=volume, mask3d=mask3d)
>>> transformed_volume = transformed["volume"]
>>> transformed_mask3d = transformed["mask3d"]

See Also: - D4: The 2D version that handles the 8 symmetries of a square

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/transforms3d/transforms.py
Python
class CubicSymmetry(Transform3D):
    """Applies a random cubic symmetry transformation to a 3D volume.

    This transform is a 3D extension of D4. While D4 handles the 8 symmetries
    of a square (4 rotations x 2 reflections), CubicSymmetry handles all 48 symmetries of a cube.
    Like D4, this transform does not create any interpolation artifacts as it only remaps voxels
    from one position to another without any interpolation.

    The 48 transformations consist of:
    - 24 rotations (orientation-preserving):
        * 4 rotations around each face diagonal (6 face diagonals x 4 rotations = 24)
    - 24 rotoreflections (orientation-reversing):
        * Reflection through a plane followed by any of the 24 rotations

    For a cube, these transformations preserve:
    - All face centers (6)
    - All vertex positions (8)
    - All edge centers (12)

    works with 3D volumes and masks of the shape (D, H, W) or (D, H, W, C)

    Args:
        p (float): Probability of applying the transform. Default: 1.0

    Targets:
        volume, mask3d, keypoints

    Image types:
        uint8, float32

    Note:
        - This transform is particularly useful for data augmentation in 3D medical imaging,
          crystallography, and voxel-based 3D modeling where the object's orientation
          is arbitrary.
        - All transformations preserve the object's chirality (handedness) when using
          pure rotations (indices 0-23) and invert it when using rotoreflections
          (indices 24-47).

    Example:
        >>> import numpy as np
        >>> import albumentations as A
        >>> volume = np.random.randint(0, 256, (10, 100, 100), dtype=np.uint8)  # (D, H, W)
        >>> mask3d = np.random.randint(0, 2, (10, 100, 100), dtype=np.uint8)    # (D, H, W)
        >>> transform = A.CubicSymmetry(p=1.0)
        >>> transformed = transform(volume=volume, mask3d=mask3d)
        >>> transformed_volume = transformed["volume"]
        >>> transformed_mask3d = transformed["mask3d"]

    See Also:
        - D4: The 2D version that handles the 8 symmetries of a square
    """

    _targets = (Targets.VOLUME, Targets.MASK3D, Targets.KEYPOINTS)

    def __init__(
        self,
        p: float = 1.0,
    ):
        super().__init__(p=p)

    def get_params_dependent_on_data(
        self,
        params: dict[str, Any],
        data: dict[str, Any],
    ) -> dict[str, Any]:
        # Randomly select one of 48 possible transformations

        volume_shape = data["volume"].shape
        return {"index": self.py_random.randint(0, 47), "volume_shape": volume_shape}

    def apply_to_volume(self, volume: np.ndarray, index: int, **params: Any) -> np.ndarray:
        return f3d.transform_cube(volume, index)

    def apply_to_keypoints(self, keypoints: np.ndarray, index: int, **params: Any) -> np.ndarray:
        return f3d.transform_cube_keypoints(keypoints, index, volume_shape=params["volume_shape"])

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return ()

class Pad3D (padding, fill=0, fill_mask=0, p=1.0) [view source on GitHub]

Pad the sides of a 3D volume by specified number of voxels.

Parameters:

Name Type Description
padding int, tuple[int, int, int] or tuple[int, int, int, int, int, int]

Padding values. Can be: * int - pad all sides by this value * tuple[int, int, int] - symmetric padding (depth, height, width) where each value is applied to both sides of the corresponding dimension * tuple[int, int, int, int, int, int] - explicit padding per side in order: (depth_front, depth_back, height_top, height_bottom, width_left, width_right)

fill ColorType

Padding value for image

fill_mask ColorType

Padding value for mask

p float

probability of applying the transform. Default: 1.0.

Targets

volume, mask3d, keypoints

Image types: uint8, float32

Note

Input volume should be a numpy array with dimensions ordered as (z, y, x) or (depth, height, width), with optional channel dimension as the last axis.

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/transforms3d/transforms.py
Python
class Pad3D(BasePad3D):
    """Pad the sides of a 3D volume by specified number of voxels.

    Args:
        padding (int, tuple[int, int, int] or tuple[int, int, int, int, int, int]): Padding values. Can be:
            * int - pad all sides by this value
            * tuple[int, int, int] - symmetric padding (depth, height, width) where each value
              is applied to both sides of the corresponding dimension
            * tuple[int, int, int, int, int, int] - explicit padding per side in order:
              (depth_front, depth_back, height_top, height_bottom, width_left, width_right)

        fill (ColorType): Padding value for image
        fill_mask (ColorType): Padding value for mask
        p (float): probability of applying the transform. Default: 1.0.

    Targets:
        volume, mask3d, keypoints

    Image types:
        uint8, float32

    Note:
        Input volume should be a numpy array with dimensions ordered as (z, y, x) or (depth, height, width),
        with optional channel dimension as the last axis.
    """

    class InitSchema(BasePad3D.InitSchema):
        padding: int | tuple[int, int, int] | tuple[int, int, int, int, int, int]

        @field_validator("padding")
        @classmethod
        def validate_padding(
            cls,
            v: int | tuple[int, int, int] | tuple[int, int, int, int, int, int],
        ) -> int | tuple[int, int, int] | tuple[int, int, int, int, int, int]:
            if isinstance(v, int) and v < 0:
                raise ValueError("Padding value must be non-negative")
            if isinstance(v, tuple) and not all(isinstance(i, int) and i >= 0 for i in v):
                raise ValueError("Padding tuple must contain non-negative integers")

            return v

    def __init__(
        self,
        padding: int | tuple[int, int, int] | tuple[int, int, int, int, int, int],
        fill: ColorType = 0,
        fill_mask: ColorType = 0,
        p: float = 1.0,
    ):
        super().__init__(fill=fill, fill_mask=fill_mask, p=p)
        self.padding = padding
        self.fill = fill
        self.fill_mask = fill_mask

    def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
        if isinstance(self.padding, int):
            pad_d = pad_h = pad_w = self.padding
            padding = (pad_d, pad_d, pad_h, pad_h, pad_w, pad_w)
        elif len(self.padding) == NUM_DIMENSIONS:
            pad_d, pad_h, pad_w = self.padding  # type: ignore[misc]
            padding = (pad_d, pad_d, pad_h, pad_h, pad_w, pad_w)
        else:
            padding = self.padding  # type: ignore[assignment]

        return {"padding": padding}

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return "padding", "fill", "fill_mask"

class PadIfNeeded3D (min_zyx=None, pad_divisor_zyx=None, position='center', fill=0, fill_mask=0, p=1.0) [view source on GitHub]

Pads the sides of a 3D volume if its dimensions are less than specified minimum dimensions. If the pad_divisor_zyx is specified, the function additionally ensures that the volume dimensions are divisible by these values.

Parameters:

Name Type Description
min_zyx tuple[int, int, int] | None

Minimum desired size as (depth, height, width). Ensures volume dimensions are at least these values. If not specified, pad_divisor_zyx must be provided.

pad_divisor_zyx tuple[int, int, int] | None

If set, pads each dimension to make it divisible by corresponding value in format (depth_div, height_div, width_div). If not specified, min_zyx must be provided.

position Literal["center", "random"]

Position where the volume is to be placed after padding. Default is 'center'.

fill ColorType

Value to fill the border voxels for volume. Default: 0

fill_mask ColorType

Value to fill the border voxels for masks. Default: 0

p float

Probability of applying the transform. Default: 1.0

Targets

volume, mask3d, keypoints

Image types: uint8, float32

Note

Input volume should be a numpy array with dimensions ordered as (z, y, x) or (depth, height, width), with optional channel dimension as the last axis.

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/transforms3d/transforms.py
Python
class PadIfNeeded3D(BasePad3D):
    """Pads the sides of a 3D volume if its dimensions are less than specified minimum dimensions.
    If the pad_divisor_zyx is specified, the function additionally ensures that the volume
    dimensions are divisible by these values.

    Args:
        min_zyx (tuple[int, int, int] | None): Minimum desired size as (depth, height, width).
            Ensures volume dimensions are at least these values.
            If not specified, pad_divisor_zyx must be provided.
        pad_divisor_zyx (tuple[int, int, int] | None): If set, pads each dimension to make it
            divisible by corresponding value in format (depth_div, height_div, width_div).
            If not specified, min_zyx must be provided.
        position (Literal["center", "random"]): Position where the volume is to be placed after padding.
            Default is 'center'.
        fill (ColorType): Value to fill the border voxels for volume. Default: 0
        fill_mask (ColorType): Value to fill the border voxels for masks. Default: 0
        p (float): Probability of applying the transform. Default: 1.0

    Targets:
        volume, mask3d, keypoints

    Image types:
        uint8, float32

    Note:
        Input volume should be a numpy array with dimensions ordered as (z, y, x) or (depth, height, width),
        with optional channel dimension as the last axis.
    """

    class InitSchema(BasePad3D.InitSchema):
        min_zyx: Annotated[tuple[int, int, int] | None, AfterValidator(check_range_bounds(0, None))]
        pad_divisor_zyx: Annotated[tuple[int, int, int] | None, AfterValidator(check_range_bounds(1, None))]
        position: Literal["center", "random"]

        @model_validator(mode="after")
        def validate_params(self) -> Self:
            if self.min_zyx is None and self.pad_divisor_zyx is None:
                msg = "At least one of min_zyx or pad_divisor_zyx must be set"
                raise ValueError(msg)
            return self

    def __init__(
        self,
        min_zyx: tuple[int, int, int] | None = None,
        pad_divisor_zyx: tuple[int, int, int] | None = None,
        position: Literal["center", "random"] = "center",
        fill: ColorType = 0,
        fill_mask: ColorType = 0,
        p: float = 1.0,
    ):
        super().__init__(fill=fill, fill_mask=fill_mask, p=p)
        self.min_zyx = min_zyx
        self.pad_divisor_zyx = pad_divisor_zyx
        self.position = position

    def get_params_dependent_on_data(
        self,
        params: dict[str, Any],
        data: dict[str, Any],
    ) -> dict[str, Any]:
        depth, height, width = data["volume"].shape[:3]
        sizes = (depth, height, width)

        paddings = [
            fgeometric.get_dimension_padding(
                current_size=size,
                min_size=self.min_zyx[i] if self.min_zyx else None,
                divisor=self.pad_divisor_zyx[i] if self.pad_divisor_zyx else None,
            )
            for i, size in enumerate(sizes)
        ]

        padding = f3d.adjust_padding_by_position3d(
            paddings=paddings,
            position=self.position,
            py_random=self.py_random,
        )

        return {"padding": padding}

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return (
            "min_zyx",
            "pad_divisor_zyx",
            "position",
            "fill",
            "fill_mask",
        )

class RandomCrop3D (size, pad_if_needed=False, fill=0, fill_mask=0, p=1.0) [view source on GitHub]

Crop random part of 3D volume.

Parameters:

Name Type Description
size tuple[int, int, int]

Desired output size of the crop in format (depth, height, width)

pad_if_needed bool

Whether to pad if the volume is smaller than desired crop size. Default: False

fill ColorType

Padding value for image if pad_if_needed is True. Default: 0

fill_mask ColorType

Padding value for mask if pad_if_needed is True. Default: 0

p float

probability of applying the transform. Default: 1.0

Targets

volume, mask3d, keypoints

Image types: uint8, float32

Note

If you want to perform random cropping only in the XY plane while preserving all slices along the Z axis, consider using RandomCrop instead. RandomCrop will apply the same XY crop to each slice independently, maintaining the full depth of the volume.

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/transforms3d/transforms.py
Python
class RandomCrop3D(BaseCropAndPad3D):
    """Crop random part of 3D volume.

    Args:
        size (tuple[int, int, int]): Desired output size of the crop in format (depth, height, width)
        pad_if_needed (bool): Whether to pad if the volume is smaller than desired crop size. Default: False
        fill (ColorType): Padding value for image if pad_if_needed is True. Default: 0
        fill_mask (ColorType): Padding value for mask if pad_if_needed is True. Default: 0
        p (float): probability of applying the transform. Default: 1.0

    Targets:
        volume, mask3d, keypoints

    Image types:
        uint8, float32

    Note:
        If you want to perform random cropping only in the XY plane while preserving all slices along
        the Z axis, consider using RandomCrop instead. RandomCrop will apply the same XY crop
        to each slice independently, maintaining the full depth of the volume.
    """

    class InitSchema(BaseTransformInitSchema):
        size: Annotated[tuple[int, int, int], AfterValidator(check_range_bounds(1, None))]
        pad_if_needed: bool
        fill: ColorType
        fill_mask: ColorType

    def __init__(
        self,
        size: tuple[int, int, int],
        pad_if_needed: bool = False,
        fill: ColorType = 0,
        fill_mask: ColorType = 0,
        p: float = 1.0,
    ):
        super().__init__(
            pad_if_needed=pad_if_needed,
            fill=fill,
            fill_mask=fill_mask,
            pad_position="random",  # Random crop uses random padding position
            p=p,
        )
        self.size = size

    def get_params_dependent_on_data(
        self,
        params: dict[str, Any],
        data: dict[str, Any],
    ) -> dict[str, Any]:
        volume = data["volume"]
        z, h, w = volume.shape[:3]
        target_z, target_h, target_w = self.size

        # Get padding params if needed
        pad_params = self._get_pad_params(
            image_shape=(z, h, w),
            target_shape=self.size,
        )

        # Update dimensions if padding is applied
        if pad_params is not None:
            z = z + pad_params["pad_front"] + pad_params["pad_back"]
            h = h + pad_params["pad_top"] + pad_params["pad_bottom"]
            w = w + pad_params["pad_left"] + pad_params["pad_right"]

        # Calculate random crop coordinates
        z_start = self.py_random.randint(0, max(0, z - target_z))
        h_start = self.py_random.randint(0, max(0, h - target_h))
        w_start = self.py_random.randint(0, max(0, w - target_w))

        crop_coords = (
            z_start,
            z_start + target_z,
            h_start,
            h_start + target_h,
            w_start,
            w_start + target_w,
        )

        return {
            "crop_coords": crop_coords,
            "pad_params": pad_params,
        }

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return "size", "pad_if_needed", "fill", "fill_mask"