Skip to content

3D (Volumetric) functional transforms (augmentations.transforms3d.functional)

def adjust_padding_by_position3d (paddings, position, py_random) [view source on GitHub]

Adjust padding values based on desired position for 3D data.

Parameters:

Name Type Description
paddings list[tuple[int, int]]

List of tuples containing padding pairs for each dimension [(d_pad), (h_pad), (w_pad)]

position Literal['center', 'random']

Position of the image after padding. Either 'center' or 'random'

py_random Random

Random number generator

Returns:

Type Description
tuple[int, int, int, int, int, int]

Final padding values (d_front, d_back, h_top, h_bottom, w_left, w_right)

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def adjust_padding_by_position3d(
    paddings: list[tuple[int, int]],  # [(front, back), (top, bottom), (left, right)]
    position: Literal["center", "random"],
    py_random: random.Random,
) -> tuple[int, int, int, int, int, int]:
    """Adjust padding values based on desired position for 3D data.

    Args:
        paddings: List of tuples containing padding pairs for each dimension [(d_pad), (h_pad), (w_pad)]
        position: Position of the image after padding. Either 'center' or 'random'
        py_random: Random number generator

    Returns:
        tuple[int, int, int, int, int, int]: Final padding values (d_front, d_back, h_top, h_bottom, w_left, w_right)
    """
    if position == "center":
        return (
            paddings[0][0],  # d_front
            paddings[0][1],  # d_back
            paddings[1][0],  # h_top
            paddings[1][1],  # h_bottom
            paddings[2][0],  # w_left
            paddings[2][1],  # w_right
        )

    # For random position, redistribute padding for each dimension
    d_pad = sum(paddings[0])
    h_pad = sum(paddings[1])
    w_pad = sum(paddings[2])

    return (
        py_random.randint(0, d_pad),  # d_front
        d_pad - py_random.randint(0, d_pad),  # d_back
        py_random.randint(0, h_pad),  # h_top
        h_pad - py_random.randint(0, h_pad),  # h_bottom
        py_random.randint(0, w_pad),  # w_left
        w_pad - py_random.randint(0, w_pad),  # w_right
    )

def crop3d (volume, crop_coords) [view source on GitHub]

Crop 3D volume using coordinates.

Parameters:

Name Type Description
volume ndarray

Input volume with shape (z, y, x) or (z, y, x, channels)

crop_coords tuple[int, int, int, int, int, int]

Tuple of (z_min, z_max, y_min, y_max, x_min, x_max) coordinates for cropping

Returns:

Type Description
ndarray

Cropped volume with same number of dimensions as input

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def crop3d(
    volume: np.ndarray,
    crop_coords: tuple[int, int, int, int, int, int],
) -> np.ndarray:
    """Crop 3D volume using coordinates.

    Args:
        volume: Input volume with shape (z, y, x) or (z, y, x, channels)
        crop_coords: Tuple of (z_min, z_max, y_min, y_max, x_min, x_max) coordinates for cropping

    Returns:
        Cropped volume with same number of dimensions as input
    """
    z_min, z_max, y_min, y_max, x_min, x_max = crop_coords

    return volume[z_min:z_max, y_min:y_max, x_min:x_max]

def cutout3d (volume, holes, fill_value) [view source on GitHub]

Cut out holes in 3D volume and fill them with a given value.

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def cutout3d(volume: np.ndarray, holes: np.ndarray, fill_value: ColorType) -> np.ndarray:
    """Cut out holes in 3D volume and fill them with a given value."""
    volume = volume.copy()
    for z1, y1, x1, z2, y2, x2 in holes:
        volume[z1:z2, y1:y2, x1:x2] = fill_value
    return volume

def filter_keypoints_in_holes3d (keypoints, holes) [view source on GitHub]

Filter out keypoints that are inside any of the 3D holes.

Parameters:

Name Type Description
keypoints np.ndarray

Array of keypoints with shape (num_keypoints, 3+). The first three columns are x, y, z coordinates.

holes np.ndarray

Array of holes with shape (num_holes, 6). Each hole is represented as [z1, y1, x1, z2, y2, x2].

Returns:

Type Description
np.ndarray

Array of keypoints that are not inside any hole.

Source code in albumentations/augmentations/transforms3d/functional.py
Python
@handle_empty_array("keypoints")
def filter_keypoints_in_holes3d(keypoints: np.ndarray, holes: np.ndarray) -> np.ndarray:
    """Filter out keypoints that are inside any of the 3D holes.

    Args:
        keypoints (np.ndarray): Array of keypoints with shape (num_keypoints, 3+).
                               The first three columns are x, y, z coordinates.
        holes (np.ndarray): Array of holes with shape (num_holes, 6).
                           Each hole is represented as [z1, y1, x1, z2, y2, x2].

    Returns:
        np.ndarray: Array of keypoints that are not inside any hole.
    """
    if holes.size == 0:
        return keypoints

    # Broadcast keypoints and holes for vectorized comparison
    # Convert keypoints from XYZ to ZYX for comparison with holes
    kp_z = keypoints[:, 2][:, np.newaxis]  # Shape: (num_keypoints, 1)
    kp_y = keypoints[:, 1][:, np.newaxis]  # Shape: (num_keypoints, 1)
    kp_x = keypoints[:, 0][:, np.newaxis]  # Shape: (num_keypoints, 1)

    # Extract hole coordinates (in ZYX order)
    hole_z1 = holes[:, 0]  # Shape: (num_holes,)
    hole_y1 = holes[:, 1]
    hole_x1 = holes[:, 2]
    hole_z2 = holes[:, 3]
    hole_y2 = holes[:, 4]
    hole_x2 = holes[:, 5]

    # Check if each keypoint is inside each hole
    inside_hole = (
        (kp_z >= hole_z1)
        & (kp_z < hole_z2)
        & (kp_y >= hole_y1)
        & (kp_y < hole_y2)
        & (kp_x >= hole_x1)
        & (kp_x < hole_x2)
    )

    # A keypoint is valid if it's not inside any hole
    valid_keypoints = ~np.any(inside_hole, axis=1)

    # Return filtered keypoints with same dtype as input
    result = keypoints[valid_keypoints]
    if len(result) == 0:
        # Ensure empty result has correct shape and dtype
        return np.array([], dtype=keypoints.dtype).reshape(0, keypoints.shape[1])
    return result

def pad_3d_with_params (volume, padding, value) [view source on GitHub]

Pad 3D volume with given parameters.

Parameters:

Name Type Description
volume ndarray

Input volume with shape (depth, height, width) or (depth, height, width, channels)

padding tuple[int, int, int, int, int, int]

Padding values in format: (depth_front, depth_back, height_top, height_bottom, width_left, width_right) where: - depth_front/back: padding at start/end of depth axis (z) - height_top/bottom: padding at start/end of height axis (y) - width_left/right: padding at start/end of width axis (x)

value Union[float, collections.abc.Sequence[float]]

Value to fill the padding

Returns:

Type Description
ndarray

Padded volume with same number of dimensions as input

Note

The padding order matches the volume dimensions (depth, height, width). For each dimension, the first value is padding at the start (smaller indices), and the second value is padding at the end (larger indices).

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def pad_3d_with_params(
    volume: np.ndarray,
    padding: tuple[int, int, int, int, int, int],
    value: ColorType,
) -> np.ndarray:
    """Pad 3D volume with given parameters.

    Args:
        volume: Input volume with shape (depth, height, width) or (depth, height, width, channels)
        padding: Padding values in format:
            (depth_front, depth_back, height_top, height_bottom, width_left, width_right)
            where:
            - depth_front/back: padding at start/end of depth axis (z)
            - height_top/bottom: padding at start/end of height axis (y)
            - width_left/right: padding at start/end of width axis (x)
        value: Value to fill the padding

    Returns:
        Padded volume with same number of dimensions as input

    Note:
        The padding order matches the volume dimensions (depth, height, width).
        For each dimension, the first value is padding at the start (smaller indices),
        and the second value is padding at the end (larger indices).
    """
    depth_front, depth_back, height_top, height_bottom, width_left, width_right = padding

    # Skip if no padding is needed
    if all(p == 0 for p in padding):
        return volume

    # Handle both 3D and 4D arrays
    pad_width = [
        (depth_front, depth_back),  # depth (z) padding
        (height_top, height_bottom),  # height (y) padding
        (width_left, width_right),  # width (x) padding
    ]

    # Add channel padding if 4D array
    if volume.ndim == NUM_VOLUME_DIMENSIONS:
        pad_width.append((0, 0))  # no padding for channels

    return np.pad(
        volume,
        pad_width=pad_width,
        mode="constant",
        constant_values=value,
    )

def transform_cube (cube, index) [view source on GitHub]

Transform cube by index (0-47)

Parameters:

Name Type Description
cube ndarray

Input array with shape (D, H, W) or (D, H, W, C)

index int

Integer from 0 to 47 specifying which transformation to apply

Returns:

Type Description
ndarray

Transformed cube with same shape as input

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def transform_cube(cube: np.ndarray, index: int) -> np.ndarray:
    """Transform cube by index (0-47)

    Args:
        cube: Input array with shape (D, H, W) or (D, H, W, C)
        index: Integer from 0 to 47 specifying which transformation to apply
    Returns:
        Transformed cube with same shape as input
    """
    if not (0 <= index < 48):
        raise ValueError("Index must be between 0 and 47")

    transformations = {
        # First 4: rotate around axis 0 (indices 0-3)
        0: lambda x: x,
        1: lambda x: np.rot90(x, k=1, axes=(1, 2)),
        2: lambda x: np.rot90(x, k=2, axes=(1, 2)),
        3: lambda x: np.rot90(x, k=3, axes=(1, 2)),
        # Next 4: flip 180° about axis 1, then rotate around axis 0 (indices 4-7)
        4: lambda x: x[::-1, :, ::-1],  # was: np.flip(x, axis=(0, 2))
        5: lambda x: np.rot90(np.rot90(x, k=2, axes=(0, 2)), k=1, axes=(1, 2)),
        6: lambda x: x[::-1, ::-1, :],  # was: np.flip(x, axis=(0, 1))
        7: lambda x: np.rot90(np.rot90(x, k=2, axes=(0, 2)), k=3, axes=(1, 2)),
        # Next 8: split between 90° and 270° about axis 1, then rotate around axis 2 (indices 8-15)
        8: lambda x: np.rot90(x, k=1, axes=(0, 2)),
        9: lambda x: np.rot90(np.rot90(x, k=1, axes=(0, 2)), k=1, axes=(0, 1)),
        10: lambda x: np.rot90(np.rot90(x, k=1, axes=(0, 2)), k=2, axes=(0, 1)),
        11: lambda x: x.transpose(1, 2, 0, *range(3, x.ndim)),
        12: lambda x: np.rot90(x, k=-1, axes=(0, 2)),
        13: lambda x: np.rot90(np.rot90(x, k=-1, axes=(0, 2)), k=1, axes=(0, 1)),
        14: lambda x: np.rot90(np.rot90(x, k=-1, axes=(0, 2)), k=2, axes=(0, 1)),
        15: lambda x: np.rot90(np.rot90(x, k=-1, axes=(0, 2)), k=3, axes=(0, 1)),
        # Final 8: split between rotations about axis 2, then rotate around axis 1 (indices 16-23)
        16: lambda x: np.rot90(x, k=1, axes=(0, 1)),
        17: lambda x: np.rot90(np.rot90(x, k=1, axes=(0, 1)), k=1, axes=(0, 2)),
        18: lambda x: np.rot90(np.rot90(x, k=1, axes=(0, 1)), k=2, axes=(0, 2)),
        19: lambda x: x.transpose(2, 0, 1, *range(3, x.ndim)),
        20: lambda x: np.rot90(x, k=-1, axes=(0, 1)),
        21: lambda x: np.rot90(np.rot90(x, k=-1, axes=(0, 1)), k=1, axes=(0, 2)),
        22: lambda x: np.rot90(np.rot90(x, k=-1, axes=(0, 1)), k=2, axes=(0, 2)),
        23: lambda x: np.rot90(np.rot90(x, k=-1, axes=(0, 1)), k=3, axes=(0, 2)),
        # Reflected versions (24-47) - same as above but with initial reflection
        24: lambda x: x[:, :, ::-1],  # was: np.flip(x, axis=2)
        25: lambda x: x.transpose(0, 2, 1, *range(3, x.ndim)),
        26: lambda x: x[:, ::-1, :],  # was: np.flip(x, axis=1)
        27: lambda x: np.rot90(x[:, :, ::-1], k=3, axes=(1, 2)),
        28: lambda x: x[::-1, :, :],  # was: np.flip(x, axis=0)
        29: lambda x: np.rot90(x[::-1, :, :], k=1, axes=(1, 2)),
        30: lambda x: x[::-1, ::-1, ::-1],  # was: np.flip(x, axis=(0, 1, 2))
        31: lambda x: np.rot90(x[::-1, :, :], k=-1, axes=(1, 2)),
        32: lambda x: x.transpose(2, 1, 0, *range(3, x.ndim)),
        33: lambda x: x.transpose(1, 2, 0, *range(3, x.ndim))[::-1, :, :],
        34: lambda x: x.transpose(2, 1, 0, *range(3, x.ndim))[::-1, ::-1, :],
        35: lambda x: x.transpose(1, 2, 0, *range(3, x.ndim))[:, ::-1, :],
        36: lambda x: np.rot90(x[:, :, ::-1], k=-1, axes=(0, 2)),
        37: lambda x: x.transpose(1, 2, 0, *range(3, x.ndim))[::-1, ::-1, ::-1],
        38: lambda x: x.transpose(2, 1, 0, *range(3, x.ndim))[:, ::-1, ::-1],
        39: lambda x: x.transpose(1, 2, 0, *range(3, x.ndim))[:, :, ::-1],
        40: lambda x: np.rot90(x[:, :, ::-1], k=1, axes=(0, 1)),
        41: lambda x: x.transpose(2, 0, 1, *range(3, x.ndim))[:, :, ::-1],
        42: lambda x: x.transpose(1, 0, 2, *range(3, x.ndim)),
        43: lambda x: x.transpose(2, 0, 1, *range(3, x.ndim))[::-1, :, :],
        44: lambda x: np.rot90(x[:, :, ::-1], k=-1, axes=(0, 1)),
        45: lambda x: x.transpose(2, 0, 1, *range(3, x.ndim))[:, ::-1, :],
        46: lambda x: x.transpose(1, 0, 2, *range(3, x.ndim))[::-1, ::-1, :],
        47: lambda x: x.transpose(2, 0, 1, *range(3, x.ndim))[::-1, ::-1, ::-1],
    }

    return transformations[index](cube.copy())