Skip to content

3D (Volumetric) functional transforms (augmentations.transforms3d.functional)

def adjust_padding_by_position3d (paddings, position, py_random) [view source on GitHub]

Adjust padding values based on desired position for 3D data.

Parameters:

Name Type Description
paddings list[tuple[int, int]]

List of tuples containing padding pairs for each dimension [(d_pad), (h_pad), (w_pad)]

position Literal['center', 'random']

Position of the image after padding. Either 'center' or 'random'

py_random Random

Random number generator

Returns:

Type Description
tuple[int, int, int, int, int, int]

Final padding values (d_front, d_back, h_top, h_bottom, w_left, w_right)

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def adjust_padding_by_position3d(
    paddings: list[tuple[int, int]],  # [(front, back), (top, bottom), (left, right)]
    position: Literal["center", "random"],
    py_random: random.Random,
) -> tuple[int, int, int, int, int, int]:
    """Adjust padding values based on desired position for 3D data.

    Args:
        paddings: List of tuples containing padding pairs for each dimension [(d_pad), (h_pad), (w_pad)]
        position: Position of the image after padding. Either 'center' or 'random'
        py_random: Random number generator

    Returns:
        tuple[int, int, int, int, int, int]: Final padding values (d_front, d_back, h_top, h_bottom, w_left, w_right)
    """
    if position == "center":
        return (
            paddings[0][0],  # d_front
            paddings[0][1],  # d_back
            paddings[1][0],  # h_top
            paddings[1][1],  # h_bottom
            paddings[2][0],  # w_left
            paddings[2][1],  # w_right
        )

    # For random position, redistribute padding for each dimension
    d_pad = sum(paddings[0])
    h_pad = sum(paddings[1])
    w_pad = sum(paddings[2])

    return (
        py_random.randint(0, d_pad),  # d_front
        d_pad - py_random.randint(0, d_pad),  # d_back
        py_random.randint(0, h_pad),  # h_top
        h_pad - py_random.randint(0, h_pad),  # h_bottom
        py_random.randint(0, w_pad),  # w_left
        w_pad - py_random.randint(0, w_pad),  # w_right
    )

def crop3d (volume, crop_coords) [view source on GitHub]

Crop 3D volume using coordinates.

Parameters:

Name Type Description
volume ndarray

Input volume with shape (z, y, x) or (z, y, x, channels)

crop_coords tuple[int, int, int, int, int, int]

Tuple of (z_min, z_max, y_min, y_max, x_min, x_max) coordinates for cropping

Returns:

Type Description
ndarray

Cropped volume with same number of dimensions as input

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def crop3d(
    volume: np.ndarray,
    crop_coords: tuple[int, int, int, int, int, int],
) -> np.ndarray:
    """Crop 3D volume using coordinates.

    Args:
        volume: Input volume with shape (z, y, x) or (z, y, x, channels)
        crop_coords: Tuple of (z_min, z_max, y_min, y_max, x_min, x_max) coordinates for cropping

    Returns:
        Cropped volume with same number of dimensions as input
    """
    z_min, z_max, y_min, y_max, x_min, x_max = crop_coords

    return volume[z_min:z_max, y_min:y_max, x_min:x_max]

def cutout3d (volume, holes, fill_value) [view source on GitHub]

Cut out holes in 3D volume and fill them with a given value.

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def cutout3d(volume: np.ndarray, holes: np.ndarray, fill_value: ColorType) -> np.ndarray:
    """Cut out holes in 3D volume and fill them with a given value."""
    volume = volume.copy()
    for z1, y1, x1, z2, y2, x2 in holes:
        volume[z1:z2, y1:y2, x1:x2] = fill_value
    return volume

def pad_3d_with_params (volume, padding, value) [view source on GitHub]

Pad 3D image with given parameters.

Parameters:

Name Type Description
volume ndarray

Input volume with shape (depth, height, width) or (depth, height, width, channels)

padding tuple[int, int, int, int, int, int]

Padding values (d_front, d_back, h_top, h_bottom, w_left, w_right)

value Union[float, collections.abc.Sequence[float]]

Padding value

Returns:

Type Description
ndarray

Padded image with same number of dimensions as input

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def pad_3d_with_params(
    volume: np.ndarray,
    padding: tuple[int, int, int, int, int, int],  # (d_front, d_back, h_top, h_bottom, w_left, w_right)
    value: ColorType,
) -> np.ndarray:
    """Pad 3D image with given parameters.

    Args:
        volume: Input volume with shape (depth, height, width) or (depth, height, width, channels)
        padding: Padding values (d_front, d_back, h_top, h_bottom, w_left, w_right)
        value: Padding value

    Returns:
        Padded image with same number of dimensions as input
    """
    d_front, d_back, h_top, h_bottom, w_left, w_right = padding

    # Skip if no padding is needed
    if d_front == d_back == h_top == h_bottom == w_left == w_right == 0:
        return volume

    # Handle both 3D and 4D arrays
    pad_width = [
        (d_front, d_back),  # depth padding
        (h_top, h_bottom),  # height padding
        (w_left, w_right),  # width padding
    ]

    # Add channel padding if 4D array
    if volume.ndim == NUM_VOLUME_DIMENSIONS:
        pad_width.append((0, 0))  # no padding for channels

    return np.pad(
        volume,
        pad_width=pad_width,
        mode="constant",
        constant_values=value,
    )

def transform_cube (cube, index) [view source on GitHub]

Transform cube by index (0-47)

Parameters:

Name Type Description
cube ndarray

Input array with shape (D, H, W) or (D, H, W, C)

index int

Integer from 0 to 47 specifying which transformation to apply

Returns:

Type Description
ndarray

Transformed cube with same shape as input

Source code in albumentations/augmentations/transforms3d/functional.py
Python
def transform_cube(cube: np.ndarray, index: int) -> np.ndarray:
    """Transform cube by index (0-47)

    Args:
        cube: Input array with shape (D, H, W) or (D, H, W, C)
        index: Integer from 0 to 47 specifying which transformation to apply
    Returns:
        Transformed cube with same shape as input
    """
    if not (0 <= index < 48):
        raise ValueError("Index must be between 0 and 47")

    # First determine if we need reflection (indices 24-47)
    needs_reflection = index >= 24
    working_cube = cube[:, :, ::-1].copy() if needs_reflection else cube.copy()
    rotation_index = index % 24

    # Map rotation_index (0-23) to specific rotations
    if rotation_index < 4:
        # First 4: rotate around axis 0
        return np.rot90(working_cube, rotation_index, axes=(1, 2))

    if rotation_index < 8:
        # Next 4: flip 180° about axis 1, then rotate around axis 0
        temp = np.rot90(working_cube, 2, axes=(0, 2))
        return np.rot90(temp, rotation_index - 4, axes=(1, 2))

    if rotation_index < 16:
        # Next 8: split between 90° and 270° about axis 1, then rotate around axis 2
        if rotation_index < 12:
            temp = np.rot90(working_cube, axes=(0, 2))
            return np.rot90(temp, rotation_index - 8, axes=(0, 1))
        temp = np.rot90(working_cube, -1, axes=(0, 2))
        return np.rot90(temp, rotation_index - 12, axes=(0, 1))

    # Final 8: split between rotations about axis 2, then rotate around axis 1
    if rotation_index < 20:
        temp = np.rot90(working_cube, axes=(0, 1))
        return np.rot90(temp, rotation_index - 16, axes=(0, 2))
    temp = np.rot90(working_cube, -1, axes=(0, 1))
    return np.rot90(temp, rotation_index - 20, axes=(0, 2))