Transforms (augmentations.transforms)¶
class AdditiveNoise
(noise_type='uniform', spatial_mode='constant', noise_params=None, approximation=1.0, p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply random noise to image channels using various noise distributions.
This transform generates noise using different probability distributions and applies it to image channels. The noise can be generated in three spatial modes and supports multiple noise distributions, each with configurable parameters.
Parameters:
Name | Type | Description |
---|---|---|
noise_type | Literal['uniform', 'gaussian', 'laplace', 'beta'] | Type of noise distribution to use. Options: - "uniform": Uniform distribution, good for simple random perturbations - "gaussian": Normal distribution, models natural random processes - "laplace": Similar to Gaussian but with heavier tails, good for outliers - "beta": Flexible bounded distribution, can be symmetric or skewed |
spatial_mode | Literal['constant', 'per_pixel', 'shared'] | How to generate and apply the noise. Options: - "constant": One noise value per channel, fastest - "per_pixel": Independent noise value for each pixel and channel, slowest - "shared": One noise map shared across all channels, medium speed |
approximation | float | float in [0, 1], default=1.0 Controls noise generation speed vs quality tradeoff. - 1.0: Generate full resolution noise (slowest, highest quality) - 0.5: Generate noise at half resolution and upsample - 0.25: Generate noise at quarter resolution and upsample Only affects 'per_pixel' and 'shared' spatial modes. |
noise_params | dict[str, Any] | None | Parameters for the chosen noise distribution. Must match the noise_type: uniform: ranges: list[tuple[float, float]] List of (min, max) ranges for each channel. Each range must be in [-1, 1]. If only one range is provided, it will be used for all channels.
gaussian: mean_range: tuple[float, float], default (0.0, 0.0) Range for sampling mean value, in [-1, 1] std_range: tuple[float, float], default (0.1, 0.1) Range for sampling standard deviation, in [0, 1] laplace: mean_range: tuple[float, float], default (0.0, 0.0) Range for sampling location parameter, in [-1, 1] scale_range: tuple[float, float], default (0.1, 0.1) Range for sampling scale parameter, in [0, 1] beta: alpha_range: tuple[float, float], default (0.5, 1.5) Value < 1 = U-shaped, Value > 1 = Bell-shaped Range for sampling first shape parameter, in (0, inf) beta_range: tuple[float, float], default (0.5, 1.5) Value < 1 = U-shaped, Value > 1 = Bell-shaped Range for sampling second shape parameter, in (0, inf) scale_range: tuple[float, float], default (0.1, 0.3) Smaller scale for subtler noise Range for sampling output scale, in [0, 1] |
Note
Performance considerations: - "constant" mode is fastest as it generates only C values (C = number of channels) - "shared" mode generates HxW values and reuses them for all channels - "per_pixel" mode generates HxWxC values, slowest but most flexible
Distribution characteristics: - uniform: Equal probability within range, good for simple perturbations - gaussian: Bell-shaped, symmetric, good for natural noise - laplace: Like gaussian but with heavier tails, good for outliers - beta: Very flexible shape, can be uniform, bell-shaped, or U-shaped
Implementation details: - All noise is generated in normalized range and scaled by image max value - For uint8 images, final noise range is [-255, 255] - For float images, final noise range is [-1, 1]
Examples:
Constant RGB shift with different ranges per channel:
>>> transform = AdditiveNoise(
... noise_type="uniform",
... spatial_mode="constant",
... noise_params={"ranges": [(-0.2, 0.2), (-0.1, 0.1), (-0.1, 0.1)]}
... )
Gaussian noise shared across channels:
>>> transform = AdditiveNoise(
... noise_type="gaussian",
... spatial_mode="shared",
... noise_params={"mean_range": (0.0, 0.0), "std_range": (0.05, 0.15)}
... )
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class AdditiveNoise(ImageOnlyTransform):
"""Apply random noise to image channels using various noise distributions.
This transform generates noise using different probability distributions and applies it
to image channels. The noise can be generated in three spatial modes and supports
multiple noise distributions, each with configurable parameters.
Args:
noise_type: Type of noise distribution to use. Options:
- "uniform": Uniform distribution, good for simple random perturbations
- "gaussian": Normal distribution, models natural random processes
- "laplace": Similar to Gaussian but with heavier tails, good for outliers
- "beta": Flexible bounded distribution, can be symmetric or skewed
spatial_mode: How to generate and apply the noise. Options:
- "constant": One noise value per channel, fastest
- "per_pixel": Independent noise value for each pixel and channel, slowest
- "shared": One noise map shared across all channels, medium speed
approximation: float in [0, 1], default=1.0
Controls noise generation speed vs quality tradeoff.
- 1.0: Generate full resolution noise (slowest, highest quality)
- 0.5: Generate noise at half resolution and upsample
- 0.25: Generate noise at quarter resolution and upsample
Only affects 'per_pixel' and 'shared' spatial modes.
noise_params: Parameters for the chosen noise distribution.
Must match the noise_type:
uniform:
ranges: list[tuple[float, float]]
List of (min, max) ranges for each channel.
Each range must be in [-1, 1].
If only one range is provided, it will be used for all channels.
[(-0.2, 0.2)] # Same range for all channels
[(-0.2, 0.2), (-0.1, 0.1), (-0.1, 0.1)] # Different ranges for RGB
gaussian:
mean_range: tuple[float, float], default (0.0, 0.0)
Range for sampling mean value, in [-1, 1]
std_range: tuple[float, float], default (0.1, 0.1)
Range for sampling standard deviation, in [0, 1]
laplace:
mean_range: tuple[float, float], default (0.0, 0.0)
Range for sampling location parameter, in [-1, 1]
scale_range: tuple[float, float], default (0.1, 0.1)
Range for sampling scale parameter, in [0, 1]
beta:
alpha_range: tuple[float, float], default (0.5, 1.5)
Value < 1 = U-shaped, Value > 1 = Bell-shaped
Range for sampling first shape parameter, in (0, inf)
beta_range: tuple[float, float], default (0.5, 1.5)
Value < 1 = U-shaped, Value > 1 = Bell-shaped
Range for sampling second shape parameter, in (0, inf)
scale_range: tuple[float, float], default (0.1, 0.3)
Smaller scale for subtler noise
Range for sampling output scale, in [0, 1]
Note:
Performance considerations:
- "constant" mode is fastest as it generates only C values (C = number of channels)
- "shared" mode generates HxW values and reuses them for all channels
- "per_pixel" mode generates HxWxC values, slowest but most flexible
Distribution characteristics:
- uniform: Equal probability within range, good for simple perturbations
- gaussian: Bell-shaped, symmetric, good for natural noise
- laplace: Like gaussian but with heavier tails, good for outliers
- beta: Very flexible shape, can be uniform, bell-shaped, or U-shaped
Implementation details:
- All noise is generated in normalized range and scaled by image max value
- For uint8 images, final noise range is [-255, 255]
- For float images, final noise range is [-1, 1]
Examples:
Constant RGB shift with different ranges per channel:
>>> transform = AdditiveNoise(
... noise_type="uniform",
... spatial_mode="constant",
... noise_params={"ranges": [(-0.2, 0.2), (-0.1, 0.1), (-0.1, 0.1)]}
... )
Gaussian noise shared across channels:
>>> transform = AdditiveNoise(
... noise_type="gaussian",
... spatial_mode="shared",
... noise_params={"mean_range": (0.0, 0.0), "std_range": (0.05, 0.15)}
... )
"""
class InitSchema(BaseTransformInitSchema):
noise_type: Literal["uniform", "gaussian", "laplace", "beta"]
spatial_mode: Literal["constant", "per_pixel", "shared"]
noise_params: dict[str, Any] | None
approximation: float = Field(ge=0.0, le=1.0)
@model_validator(mode="after")
def validate_noise_params(self) -> Self:
# Default parameters for each noise type
default_params = {
"uniform": {
"ranges": [(-0.1, 0.1)], # Single channel by default
},
"gaussian": {"mean_range": (0.0, 0.0), "std_range": (0.05, 0.15)},
"laplace": {"mean_range": (0.0, 0.0), "scale_range": (0.05, 0.15)},
"beta": {
"alpha_range": (0.5, 1.5),
"beta_range": (0.5, 1.5),
"scale_range": (0.1, 0.3),
},
}
# Use default params if none provided
params_dict = self.noise_params if self.noise_params is not None else default_params[self.noise_type]
# Convert dict to appropriate NoiseParams object
params_class = {
"uniform": UniformParams,
"gaussian": GaussianParams,
"laplace": LaplaceParams,
"beta": BetaParams,
}[self.noise_type]
# Add noise_type to params if not present
params_dict = {**params_dict, "noise_type": self.noise_type} # type: ignore[dict-item]
self.noise_params = params_class(**params_dict)
return self
def __init__(
self,
noise_type: Literal["uniform", "gaussian", "laplace", "beta"] = "uniform",
spatial_mode: Literal["constant", "per_pixel", "shared"] = "constant",
noise_params: dict[str, Any] | None = None,
approximation: float = 1.0,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.noise_type = noise_type
self.spatial_mode = spatial_mode
self.noise_params = noise_params
self.approximation = approximation
def apply(
self,
img: np.ndarray,
noise_map: np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.add_noise(img, noise_map)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
image = data["image"] if "image" in data else data["images"][0]
max_value = MAX_VALUES_BY_DTYPE[image.dtype]
noise_map = fmain.generate_noise(
noise_type=self.noise_type,
spatial_mode=self.spatial_mode,
shape=image.shape,
params=self.noise_params,
max_value=max_value,
approximation=self.approximation,
random_generator=self.random_generator,
)
return {"noise_map": noise_map}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "noise_type", "spatial_mode", "noise_params", "approximation"
class AutoContrast
(p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply random auto contrast to images.
Auto contrast enhances image contrast by stretching the intensity range to use the full range while preserving relative intensities. For each color channel: 1. Compute histogram 2. Find cumulative percentiles 3. Clip and scale intensities to full range
Parameters:
Name | Type | Description |
---|---|---|
p | float | probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class AutoContrast(ImageOnlyTransform):
"""Apply random auto contrast to images.
Auto contrast enhances image contrast by stretching the intensity range
to use the full range while preserving relative intensities. For each
color channel:
1. Compute histogram
2. Find cumulative percentiles
3. Clip and scale intensities to full range
Args:
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
class InitSchema(BaseTransformInitSchema):
pass
def __init__(
self,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
return fmain.auto_contrast(img)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return ()
class BetaParams
¶
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class BetaParams(NoiseParamsBase):
noise_type: Literal["beta"] = "beta"
alpha_range: Annotated[
Sequence[float],
AfterValidator(check_range_bounds(min_val=0)),
]
beta_range: Annotated[
Sequence[float],
AfterValidator(check_range_bounds(min_val=0)),
]
scale_range: Annotated[
Sequence[float],
AfterValidator(check_range_bounds(min_val=0, max_val=1)),
]
class CLAHE
(clip_limit=4.0, tile_grid_size=(8, 8), always_apply=None, p=0.5)
[view source on GitHub] ¶
Apply Contrast Limited Adaptive Histogram Equalization (CLAHE) to the input image.
CLAHE is an advanced method of improving the contrast in an image. Unlike regular histogram equalization, which operates on the entire image, CLAHE operates on small regions (tiles) in the image. This results in a more balanced equalization, preventing over-amplification of contrast in areas with initially low contrast.
Parameters:
Name | Type | Description |
---|---|---|
clip_limit | tuple[float, float] | float | Controls the contrast enhancement limit. - If a single float is provided, the range will be (1, clip_limit). - If a tuple of two floats is provided, it defines the range for random selection. Higher values allow for more contrast enhancement, but may also increase noise. Default: (1, 4) |
tile_grid_size | tuple[int, int] | Defines the number of tiles in the row and column directions. Format is (rows, columns). Smaller tile sizes can lead to more localized enhancements, while larger sizes give results closer to global histogram equalization. Default: (8, 8) |
p | float | Probability of applying the transform. Default: 0.5 |
Notes
- Supports only RGB or grayscale images.
- For color images, CLAHE is applied to the L channel in the LAB color space.
- The clip limit determines the maximum slope of the cumulative histogram. A lower clip limit will result in more contrast limiting.
- Tile grid size affects the adaptiveness of the method. More tiles increase local adaptiveness but can lead to an unnatural look if set too high.
Targets
image, volume
Image types: uint8, float32
Number of channels: 1, 3
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.CLAHE(clip_limit=(1, 4), tile_grid_size=(8, 8), p=1.0)
>>> result = transform(image=image)
>>> clahe_image = result["image"]
References
- https://docs.opencv.org/master/d5/daf/tutorial_py_histogram_equalization.html
- Zuiderveld, Karel. "Contrast Limited Adaptive Histogram Equalization." Graphic Gems IV. Academic Press Professional, Inc., 1994.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class CLAHE(ImageOnlyTransform):
"""Apply Contrast Limited Adaptive Histogram Equalization (CLAHE) to the input image.
CLAHE is an advanced method of improving the contrast in an image. Unlike regular histogram
equalization, which operates on the entire image, CLAHE operates on small regions (tiles)
in the image. This results in a more balanced equalization, preventing over-amplification
of contrast in areas with initially low contrast.
Args:
clip_limit (tuple[float, float] | float): Controls the contrast enhancement limit.
- If a single float is provided, the range will be (1, clip_limit).
- If a tuple of two floats is provided, it defines the range for random selection.
Higher values allow for more contrast enhancement, but may also increase noise.
Default: (1, 4)
tile_grid_size (tuple[int, int]): Defines the number of tiles in the row and column directions.
Format is (rows, columns). Smaller tile sizes can lead to more localized enhancements,
while larger sizes give results closer to global histogram equalization.
Default: (8, 8)
p (float): Probability of applying the transform. Default: 0.5
Notes:
- Supports only RGB or grayscale images.
- For color images, CLAHE is applied to the L channel in the LAB color space.
- The clip limit determines the maximum slope of the cumulative histogram. A lower
clip limit will result in more contrast limiting.
- Tile grid size affects the adaptiveness of the method. More tiles increase local
adaptiveness but can lead to an unnatural look if set too high.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
1, 3
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.CLAHE(clip_limit=(1, 4), tile_grid_size=(8, 8), p=1.0)
>>> result = transform(image=image)
>>> clahe_image = result["image"]
References:
- https://docs.opencv.org/master/d5/daf/tutorial_py_histogram_equalization.html
- Zuiderveld, Karel. "Contrast Limited Adaptive Histogram Equalization."
Graphic Gems IV. Academic Press Professional, Inc., 1994.
"""
class InitSchema(BaseTransformInitSchema):
clip_limit: OnePlusFloatRangeType
tile_grid_size: Annotated[tuple[int, int], AfterValidator(check_range_bounds(1, None))]
def __init__(
self,
clip_limit: ScaleFloatType = 4.0,
tile_grid_size: tuple[int, int] = (8, 8),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.clip_limit = cast(tuple[float, float], clip_limit)
self.tile_grid_size = tile_grid_size
def apply(self, img: np.ndarray, clip_limit: float, **params: Any) -> np.ndarray:
if not is_rgb_image(img) and not is_grayscale_image(img):
msg = "CLAHE transformation expects 1-channel or 3-channel images."
raise TypeError(msg)
return fmain.clahe(img, clip_limit, self.tile_grid_size)
def get_params(self) -> dict[str, float]:
return {"clip_limit": self.py_random.uniform(*self.clip_limit)}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return ("clip_limit", "tile_grid_size")
class ChannelShuffle
[view source on GitHub] ¶
Randomly rearrange channels of the image.
Parameters:
Name | Type | Description |
---|---|---|
p | probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ChannelShuffle(ImageOnlyTransform):
"""Randomly rearrange channels of the image.
Args:
p: probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
"""
def apply(
self,
img: np.ndarray,
channels_shuffled: tuple[int, ...],
**params: Any,
) -> np.ndarray:
return fmain.channel_shuffle(img, channels_shuffled)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
ch_arr = list(range(params["shape"][2]))
self.random_generator.shuffle(ch_arr)
return {"channels_shuffled": ch_arr}
def get_transform_init_args_names(self) -> tuple[()]:
return ()
class ChromaticAberration
(primary_distortion_limit=(-0.02, 0.02), secondary_distortion_limit=(-0.05, 0.05), mode='green_purple', interpolation=1, p=0.5, always_apply=None)
[view source on GitHub] ¶
Add lateral chromatic aberration by distorting the red and blue channels of the input image.
Chromatic aberration is an optical effect that occurs when a lens fails to focus all colors to the same point. This transform simulates this effect by applying different radial distortions to the red and blue channels of the image, while leaving the green channel unchanged.
Parameters:
Name | Type | Description |
---|---|---|
primary_distortion_limit | tuple[float, float] | float | Range of the primary radial distortion coefficient. If a single float value is provided, the range will be (-primary_distortion_limit, primary_distortion_limit). This parameter controls the distortion in the center of the image: - Positive values result in pincushion distortion (edges bend inward) - Negative values result in barrel distortion (edges bend outward) Default: (-0.02, 0.02). |
secondary_distortion_limit | tuple[float, float] | float | Range of the secondary radial distortion coefficient. If a single float value is provided, the range will be (-secondary_distortion_limit, secondary_distortion_limit). This parameter controls the distortion in the corners of the image: - Positive values enhance pincushion distortion - Negative values enhance barrel distortion Default: (-0.05, 0.05). |
mode | Literal["green_purple", "red_blue", "random"] | Type of color fringing to apply. Options are: - 'green_purple': Distorts red and blue channels in opposite directions, creating green-purple fringing. - 'red_blue': Distorts red and blue channels in the same direction, creating red-blue fringing. - 'random': Randomly chooses between 'green_purple' and 'red_blue' modes for each application. Default: 'green_purple'. |
interpolation | InterpolationType | Flag specifying the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR. |
p | float | Probability of applying the transform. Should be in the range [0, 1]. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: 3
Note
- This transform only affects RGB images. Grayscale images will raise an error.
- The strength of the effect depends on both primary and secondary distortion limits.
- Higher absolute values for distortion limits will result in more pronounced chromatic aberration.
- The 'green_purple' mode tends to produce more noticeable effects than 'red_blue'.
Examples:
>>> import albumentations as A
>>> import cv2
>>> transform = A.ChromaticAberration(
... primary_distortion_limit=0.05,
... secondary_distortion_limit=0.1,
... mode='green_purple',
... interpolation=cv2.INTER_LINEAR,
... p=1.0
... )
>>> transformed = transform(image=image)
>>> aberrated_image = transformed['image']
References
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ChromaticAberration(ImageOnlyTransform):
"""Add lateral chromatic aberration by distorting the red and blue channels of the input image.
Chromatic aberration is an optical effect that occurs when a lens fails to focus all colors to the same point.
This transform simulates this effect by applying different radial distortions to the red and blue channels
of the image, while leaving the green channel unchanged.
Args:
primary_distortion_limit (tuple[float, float] | float): Range of the primary radial distortion coefficient.
If a single float value is provided, the range
will be (-primary_distortion_limit, primary_distortion_limit).
This parameter controls the distortion in the center of the image:
- Positive values result in pincushion distortion (edges bend inward)
- Negative values result in barrel distortion (edges bend outward)
Default: (-0.02, 0.02).
secondary_distortion_limit (tuple[float, float] | float): Range of the secondary radial distortion coefficient.
If a single float value is provided, the range
will be (-secondary_distortion_limit, secondary_distortion_limit).
This parameter controls the distortion in the corners of the image:
- Positive values enhance pincushion distortion
- Negative values enhance barrel distortion
Default: (-0.05, 0.05).
mode (Literal["green_purple", "red_blue", "random"]): Type of color fringing to apply. Options are:
- 'green_purple': Distorts red and blue channels in opposite directions, creating green-purple fringing.
- 'red_blue': Distorts red and blue channels in the same direction, creating red-blue fringing.
- 'random': Randomly chooses between 'green_purple' and 'red_blue' modes for each application.
Default: 'green_purple'.
interpolation (InterpolationType): Flag specifying the interpolation algorithm. Should be one of:
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
Default: cv2.INTER_LINEAR.
p (float): Probability of applying the transform. Should be in the range [0, 1].
Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
3
Note:
- This transform only affects RGB images. Grayscale images will raise an error.
- The strength of the effect depends on both primary and secondary distortion limits.
- Higher absolute values for distortion limits will result in more pronounced chromatic aberration.
- The 'green_purple' mode tends to produce more noticeable effects than 'red_blue'.
Example:
>>> import albumentations as A
>>> import cv2
>>> transform = A.ChromaticAberration(
... primary_distortion_limit=0.05,
... secondary_distortion_limit=0.1,
... mode='green_purple',
... interpolation=cv2.INTER_LINEAR,
... p=1.0
... )
>>> transformed = transform(image=image)
>>> aberrated_image = transformed['image']
References:
- https://en.wikipedia.org/wiki/Chromatic_aberration
- https://www.researchgate.net/publication/320691320_Chromatic_Aberration_in_Digital_Images
"""
class InitSchema(BaseTransformInitSchema):
primary_distortion_limit: SymmetricRangeType
secondary_distortion_limit: SymmetricRangeType
mode: ChromaticAberrationMode
interpolation: InterpolationType
def __init__(
self,
primary_distortion_limit: ScaleFloatType = (-0.02, 0.02),
secondary_distortion_limit: ScaleFloatType = (-0.05, 0.05),
mode: ChromaticAberrationMode = "green_purple",
interpolation: InterpolationType = cv2.INTER_LINEAR,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.primary_distortion_limit = cast(
tuple[float, float],
primary_distortion_limit,
)
self.secondary_distortion_limit = cast(
tuple[float, float],
secondary_distortion_limit,
)
self.mode = mode
self.interpolation = interpolation
def apply(
self,
img: np.ndarray,
primary_distortion_red: float,
secondary_distortion_red: float,
primary_distortion_blue: float,
secondary_distortion_blue: float,
**params: Any,
) -> np.ndarray:
non_rgb_error(img)
return fmain.chromatic_aberration(
img,
primary_distortion_red,
secondary_distortion_red,
primary_distortion_blue,
secondary_distortion_blue,
self.interpolation,
)
def get_params(self) -> dict[str, float]:
primary_distortion_red = self.py_random.uniform(*self.primary_distortion_limit)
secondary_distortion_red = self.py_random.uniform(
*self.secondary_distortion_limit,
)
primary_distortion_blue = self.py_random.uniform(*self.primary_distortion_limit)
secondary_distortion_blue = self.py_random.uniform(
*self.secondary_distortion_limit,
)
secondary_distortion_red = self._match_sign(
primary_distortion_red,
secondary_distortion_red,
)
secondary_distortion_blue = self._match_sign(
primary_distortion_blue,
secondary_distortion_blue,
)
if self.mode == "green_purple":
# distortion coefficients of the red and blue channels have the same sign
primary_distortion_blue = self._match_sign(
primary_distortion_red,
primary_distortion_blue,
)
secondary_distortion_blue = self._match_sign(
secondary_distortion_red,
secondary_distortion_blue,
)
if self.mode == "red_blue":
# distortion coefficients of the red and blue channels have the opposite sign
primary_distortion_blue = self._unmatch_sign(
primary_distortion_red,
primary_distortion_blue,
)
secondary_distortion_blue = self._unmatch_sign(
secondary_distortion_red,
secondary_distortion_blue,
)
return {
"primary_distortion_red": primary_distortion_red,
"secondary_distortion_red": secondary_distortion_red,
"primary_distortion_blue": primary_distortion_blue,
"secondary_distortion_blue": secondary_distortion_blue,
}
@staticmethod
def _match_sign(a: float, b: float) -> float:
# Match the sign of b to a
if (a < 0 < b) or (a > 0 > b):
return -b
return b
@staticmethod
def _unmatch_sign(a: float, b: float) -> float:
# Unmatch the sign of b to a
if (a < 0 and b < 0) or (a > 0 and b > 0):
return -b
return b
def get_transform_init_args_names(self) -> tuple[str, str, str, str]:
return (
"primary_distortion_limit",
"secondary_distortion_limit",
"mode",
"interpolation",
)
class ColorJitter
(brightness=(0.8, 1.2), contrast=(0.8, 1.2), saturation=(0.8, 1.2), hue=(-0.5, 0.5), p=0.5, always_apply=None)
[view source on GitHub] ¶
Randomly changes the brightness, contrast, saturation, and hue of an image.
This transform is similar to torchvision's ColorJitter but with some differences due to the use of OpenCV instead of Pillow. The main differences are: 1. OpenCV and Pillow use different formulas to convert images to HSV format. 2. This implementation uses value saturation instead of uint8 overflow as in Pillow.
These differences may result in slightly different output compared to torchvision's ColorJitter.
Parameters:
Name | Type | Description |
---|---|---|
brightness | tuple[float, float] | float | How much to jitter brightness. If float: The brightness factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. If tuple: The brightness factor is sampled from the range specified. Should be non-negative numbers. Default: (0.8, 1.2) |
contrast | tuple[float, float] | float | How much to jitter contrast. If float: The contrast factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. If tuple: The contrast factor is sampled from the range specified. Should be non-negative numbers. Default: (0.8, 1.2) |
saturation | tuple[float, float] | float | How much to jitter saturation. If float: The saturation factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. If tuple: The saturation factor is sampled from the range specified. Should be non-negative numbers. Default: (0.8, 1.2) |
hue | float or tuple of float (min, max | How much to jitter hue. If float: The hue factor is chosen uniformly from [-hue, hue]. Should have 0 <= hue <= 0.5. If tuple: The hue factor is sampled from the range specified. Values should be in range [-0.5, 0.5]. Default: (-0.5, 0.5) p (float): Probability of applying the transform. Should be in the range [0, 1]. Default: 0.5 |
Targets
image, volume
Image types: uint8, float32
Number of channels: 1, 3
Note
- The order of application for these color transformations is random for each image.
- The ranges for brightness, contrast, and saturation are applied as multiplicative factors.
- The range for hue is applied as an additive factor.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1, p=1.0)
>>> result = transform(image=image)
>>> jittered_image = result['image']
References
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ColorJitter(ImageOnlyTransform):
"""Randomly changes the brightness, contrast, saturation, and hue of an image.
This transform is similar to torchvision's ColorJitter but with some differences due to the use of OpenCV
instead of Pillow. The main differences are:
1. OpenCV and Pillow use different formulas to convert images to HSV format.
2. This implementation uses value saturation instead of uint8 overflow as in Pillow.
These differences may result in slightly different output compared to torchvision's ColorJitter.
Args:
brightness (tuple[float, float] | float): How much to jitter brightness.
If float:
The brightness factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
If tuple:
The brightness factor is sampled from the range specified.
Should be non-negative numbers.
Default: (0.8, 1.2)
contrast (tuple[float, float] | float): How much to jitter contrast.
If float:
The contrast factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
If tuple:
The contrast factor is sampled from the range specified.
Should be non-negative numbers.
Default: (0.8, 1.2)
saturation (tuple[float, float] | float): How much to jitter saturation.
If float:
The saturation factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
If tuple:
The saturation factor is sampled from the range specified.
Should be non-negative numbers.
Default: (0.8, 1.2)
hue (float or tuple of float (min, max)): How much to jitter hue.
If float:
The hue factor is chosen uniformly from [-hue, hue]. Should have 0 <= hue <= 0.5.
If tuple:
The hue factor is sampled from the range specified. Values should be in range [-0.5, 0.5].
Default: (-0.5, 0.5)
p (float): Probability of applying the transform. Should be in the range [0, 1].
Default: 0.5
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
1, 3
Note:
- The order of application for these color transformations is random for each image.
- The ranges for brightness, contrast, and saturation are applied as multiplicative factors.
- The range for hue is applied as an additive factor.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1, p=1.0)
>>> result = transform(image=image)
>>> jittered_image = result['image']
References:
- https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.ColorJitter
- https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
"""
class InitSchema(BaseTransformInitSchema):
brightness: ScaleFloatType
contrast: ScaleFloatType
saturation: ScaleFloatType
hue: ScaleFloatType
@field_validator("brightness", "contrast", "saturation", "hue")
@classmethod
def check_ranges(
cls,
value: ScaleFloatType,
info: ValidationInfo,
) -> tuple[float, float]:
if info.field_name == "hue":
bounds = -0.5, 0.5
bias = 0
clip = False
elif info.field_name in ["brightness", "contrast", "saturation"]:
bounds = 0, float("inf")
bias = 1
clip = True
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError(
f"If {info.field_name} is a single number, it must be non negative.",
)
left = bias - value
if clip:
left = max(left, 0)
value = (left, bias + value)
elif isinstance(value, tuple) and len(value) == PAIR:
check_range(value, *bounds, info.field_name)
return cast(tuple[float, float], value)
def __init__(
self,
brightness: ScaleFloatType = (0.8, 1.2),
contrast: ScaleFloatType = (0.8, 1.2),
saturation: ScaleFloatType = (0.8, 1.2),
hue: ScaleFloatType = (-0.5, 0.5),
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.brightness = cast(tuple[float, float], brightness)
self.contrast = cast(tuple[float, float], contrast)
self.saturation = cast(tuple[float, float], saturation)
self.hue = cast(tuple[float, float], hue)
self.transforms = [
fmain.adjust_brightness_torchvision,
fmain.adjust_contrast_torchvision,
fmain.adjust_saturation_torchvision,
fmain.adjust_hue_torchvision,
]
def get_params(self) -> dict[str, Any]:
brightness = self.py_random.uniform(*self.brightness)
contrast = self.py_random.uniform(*self.contrast)
saturation = self.py_random.uniform(*self.saturation)
hue = self.py_random.uniform(*self.hue)
order = [0, 1, 2, 3]
self.random_generator.shuffle(order)
return {
"brightness": brightness,
"contrast": contrast,
"saturation": saturation,
"hue": hue,
"order": order,
}
def apply(
self,
img: np.ndarray,
brightness: float,
contrast: float,
saturation: float,
hue: float,
order: list[int],
**params: Any,
) -> np.ndarray:
if not is_rgb_image(img) and not is_grayscale_image(img):
msg = "ColorJitter transformation expects 1-channel or 3-channel images."
raise TypeError(msg)
color_transforms = [brightness, contrast, saturation, hue]
for i in order:
img = self.transforms[i](img, color_transforms[i])
return img
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "brightness", "contrast", "saturation", "hue"
class Downscale
(scale_min=None, scale_max=None, interpolation=None, scale_range=(0.25, 0.25), interpolation_pair={'upscale': 0, 'downscale': 0}, always_apply=None, p=0.5)
[view source on GitHub] ¶
Decrease image quality by downscaling and upscaling back.
This transform simulates the effect of a low-resolution image by first downscaling the image to a lower resolution and then upscaling it back to its original size. This process introduces loss of detail and can be used to simulate low-quality images or to test the robustness of models to different image resolutions.
Parameters:
Name | Type | Description |
---|---|---|
scale_range | tuple[float, float] | Range for the downscaling factor. Should be two float values between 0 and 1, where the first value is less than or equal to the second. The actual downscaling factor will be randomly chosen from this range for each image. Lower values result in more aggressive downscaling. Default: (0.25, 0.25) |
interpolation_pair | InterpolationDict | A dictionary specifying the interpolation methods to use for downscaling and upscaling. Should contain two keys: - 'downscale': Interpolation method for downscaling - 'upscale': Interpolation method for upscaling Values should be OpenCV interpolation flags (e.g., cv2.INTER_NEAREST, cv2.INTER_LINEAR, etc.) Default: {'downscale': cv2.INTER_NEAREST, 'upscale': cv2.INTER_NEAREST} |
p | float | Probability of applying the transform. Should be in the range [0, 1]. Default: 0.5 |
Targets
image, volume
Image types: uint8, float32
Note
- The actual downscaling factor is randomly chosen for each image from the range specified in scale_range.
- Using different interpolation methods for downscaling and upscaling can produce various effects. For example, using INTER_NEAREST for both can create a pixelated look, while using INTER_LINEAR or INTER_CUBIC can produce smoother results.
- This transform can be useful for data augmentation, especially when training models that need to be robust to variations in image quality or resolution.
Examples:
>>> import albumentations as A
>>> import cv2
>>> transform = A.Downscale(
... scale_range=(0.5, 0.75),
... interpolation_pair={'downscale': cv2.INTER_NEAREST, 'upscale': cv2.INTER_LINEAR},
... p=0.5
... )
>>> transformed = transform(image=image)
>>> downscaled_image = transformed['image']
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Downscale(ImageOnlyTransform):
"""Decrease image quality by downscaling and upscaling back.
This transform simulates the effect of a low-resolution image by first downscaling
the image to a lower resolution and then upscaling it back to its original size.
This process introduces loss of detail and can be used to simulate low-quality
images or to test the robustness of models to different image resolutions.
Args:
scale_range (tuple[float, float]): Range for the downscaling factor.
Should be two float values between 0 and 1, where the first value is less than or equal to the second.
The actual downscaling factor will be randomly chosen from this range for each image.
Lower values result in more aggressive downscaling.
Default: (0.25, 0.25)
interpolation_pair (InterpolationDict): A dictionary specifying the interpolation methods to use for
downscaling and upscaling. Should contain two keys:
- 'downscale': Interpolation method for downscaling
- 'upscale': Interpolation method for upscaling
Values should be OpenCV interpolation flags (e.g., cv2.INTER_NEAREST, cv2.INTER_LINEAR, etc.)
Default: {'downscale': cv2.INTER_NEAREST, 'upscale': cv2.INTER_NEAREST}
p (float): Probability of applying the transform. Should be in the range [0, 1].
Default: 0.5
Targets:
image, volume
Image types:
uint8, float32
Note:
- The actual downscaling factor is randomly chosen for each image from the range
specified in scale_range.
- Using different interpolation methods for downscaling and upscaling can produce
various effects. For example, using INTER_NEAREST for both can create a pixelated look,
while using INTER_LINEAR or INTER_CUBIC can produce smoother results.
- This transform can be useful for data augmentation, especially when training models
that need to be robust to variations in image quality or resolution.
Example:
>>> import albumentations as A
>>> import cv2
>>> transform = A.Downscale(
... scale_range=(0.5, 0.75),
... interpolation_pair={'downscale': cv2.INTER_NEAREST, 'upscale': cv2.INTER_LINEAR},
... p=0.5
... )
>>> transformed = transform(image=image)
>>> downscaled_image = transformed['image']
"""
class InitSchema(BaseTransformInitSchema):
scale_min: float | None
scale_max: float | None
interpolation: int | Interpolation | InterpolationDict | None = Field(
default_factory=lambda: Interpolation(
downscale=cv2.INTER_NEAREST,
upscale=cv2.INTER_NEAREST,
),
)
interpolation_pair: InterpolationPydantic
scale_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
AfterValidator(nondecreasing),
]
@model_validator(mode="after")
def validate_params(self) -> Self:
if self.scale_min is not None and self.scale_max is not None:
warn(
"scale_min and scale_max are deprecated. Use scale_range instead.",
DeprecationWarning,
stacklevel=2,
)
self.scale_range = (self.scale_min, self.scale_max)
self.scale_min = None
self.scale_max = None
if self.interpolation is not None:
warn(
"Downscale.interpolation is deprecated. Use Downscale.interpolation_pair instead.",
DeprecationWarning,
stacklevel=2,
)
if isinstance(self.interpolation, dict):
self.interpolation_pair = InterpolationPydantic(
**self.interpolation,
)
elif isinstance(self.interpolation, int):
self.interpolation_pair = InterpolationPydantic(
upscale=self.interpolation,
downscale=self.interpolation,
)
elif isinstance(self.interpolation, Interpolation):
self.interpolation_pair = InterpolationPydantic(
upscale=self.interpolation.upscale,
downscale=self.interpolation.downscale,
)
self.interpolation = None
return self
def __init__(
self,
scale_min: float | None = None,
scale_max: float | None = None,
interpolation: int | Interpolation | InterpolationDict | None = None,
scale_range: tuple[float, float] = (0.25, 0.25),
interpolation_pair: InterpolationDict = InterpolationDict(
{"upscale": cv2.INTER_NEAREST, "downscale": cv2.INTER_NEAREST},
),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.scale_range = scale_range
self.interpolation_pair = interpolation_pair
def apply(self, img: np.ndarray, scale: float, **params: Any) -> np.ndarray:
return fmain.downscale(
img,
scale=scale,
down_interpolation=self.interpolation_pair["downscale"],
up_interpolation=self.interpolation_pair["upscale"],
)
def get_params(self) -> dict[str, Any]:
return {"scale": self.py_random.uniform(*self.scale_range)}
def get_transform_init_args_names(self) -> tuple[str, str]:
return "scale_range", "interpolation_pair"
class Emboss
(alpha=(0.2, 0.5), strength=(0.2, 0.7), p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply embossing effect to the input image.
This transform creates an emboss effect by highlighting edges and creating a 3D-like texture in the image. It works by applying a specific convolution kernel to the image that emphasizes differences in adjacent pixel values.
Parameters:
Name | Type | Description |
---|---|---|
alpha | tuple[float, float] | Range to choose the visibility of the embossed image. At 0, only the original image is visible, at 1.0 only its embossed version is visible. Values should be in the range [0, 1]. Alpha will be randomly selected from this range for each image. Default: (0.2, 0.5) |
strength | tuple[float, float] | Range to choose the strength of the embossing effect. Higher values create a more pronounced 3D effect. Values should be non-negative. Strength will be randomly selected from this range for each image. Default: (0.2, 0.7) |
p | float | Probability of applying the transform. Should be in the range [0, 1]. Default: 0.5 |
Targets
image, volume
Image types: uint8, float32
Note
- The emboss effect is created using a 3x3 convolution kernel.
- The 'alpha' parameter controls the blend between the original image and the embossed version. A higher alpha value will result in a more pronounced emboss effect.
- The 'strength' parameter affects the intensity of the embossing. Higher strength values will create more contrast in the embossed areas, resulting in a stronger 3D-like effect.
- This transform can be useful for creating artistic effects or for data augmentation in tasks where edge information is important.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.Emboss(alpha=(0.2, 0.5), strength=(0.2, 0.7), p=0.5)
>>> result = transform(image=image)
>>> embossed_image = result['image']
References
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Emboss(ImageOnlyTransform):
"""Apply embossing effect to the input image.
This transform creates an emboss effect by highlighting edges and creating a 3D-like texture
in the image. It works by applying a specific convolution kernel to the image that emphasizes
differences in adjacent pixel values.
Args:
alpha (tuple[float, float]): Range to choose the visibility of the embossed image.
At 0, only the original image is visible, at 1.0 only its embossed version is visible.
Values should be in the range [0, 1].
Alpha will be randomly selected from this range for each image.
Default: (0.2, 0.5)
strength (tuple[float, float]): Range to choose the strength of the embossing effect.
Higher values create a more pronounced 3D effect.
Values should be non-negative.
Strength will be randomly selected from this range for each image.
Default: (0.2, 0.7)
p (float): Probability of applying the transform. Should be in the range [0, 1].
Default: 0.5
Targets:
image, volume
Image types:
uint8, float32
Note:
- The emboss effect is created using a 3x3 convolution kernel.
- The 'alpha' parameter controls the blend between the original image and the embossed version.
A higher alpha value will result in a more pronounced emboss effect.
- The 'strength' parameter affects the intensity of the embossing. Higher strength values
will create more contrast in the embossed areas, resulting in a stronger 3D-like effect.
- This transform can be useful for creating artistic effects or for data augmentation
in tasks where edge information is important.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.Emboss(alpha=(0.2, 0.5), strength=(0.2, 0.7), p=0.5)
>>> result = transform(image=image)
>>> embossed_image = result['image']
References:
- https://en.wikipedia.org/wiki/Image_embossing
- https://www.researchgate.net/publication/303412455_Application_of_Emboss_Filtering_in_Image_Processing
"""
class InitSchema(BaseTransformInitSchema):
alpha: Annotated[tuple[float, float], AfterValidator(check_range_bounds(0, 1))]
strength: Annotated[tuple[float, float], AfterValidator(check_range_bounds(0, None))]
def __init__(
self,
alpha: tuple[float, float] = (0.2, 0.5),
strength: tuple[float, float] = (0.2, 0.7),
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.alpha = alpha
self.strength = strength
@staticmethod
def __generate_emboss_matrix(
alpha_sample: np.ndarray,
strength_sample: np.ndarray,
) -> np.ndarray:
matrix_nochange = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32)
matrix_effect = np.array(
[
[-1 - strength_sample, 0 - strength_sample, 0],
[0 - strength_sample, 1, 0 + strength_sample],
[0, 0 + strength_sample, 1 + strength_sample],
],
dtype=np.float32,
)
return (1 - alpha_sample) * matrix_nochange + alpha_sample * matrix_effect
def get_params(self) -> dict[str, np.ndarray]:
alpha = self.py_random.uniform(*self.alpha)
strength = self.py_random.uniform(*self.strength)
emboss_matrix = self.__generate_emboss_matrix(
alpha_sample=alpha,
strength_sample=strength,
)
return {"emboss_matrix": emboss_matrix}
def apply(
self,
img: np.ndarray,
emboss_matrix: np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.convolve(img, emboss_matrix)
def get_transform_init_args_names(self) -> tuple[str, str]:
return ("alpha", "strength")
class Equalize
(mode='cv', by_channels=True, mask=None, mask_params=(), always_apply=None, p=0.5)
[view source on GitHub] ¶
Equalize the image histogram.
This transform applies histogram equalization to the input image. Histogram equalization is a method in image processing of contrast adjustment using the image's histogram.
Parameters:
Name | Type | Description |
---|---|---|
mode | Literal['cv', 'pil'] | Use OpenCV or Pillow equalization method. Default: 'cv' |
by_channels | bool | If True, use equalization by channels separately, else convert image to YCbCr representation and use equalization by |
mask | np.ndarray, callable | If given, only the pixels selected by the mask are included in the analysis. Can be: - A 1-channel or 3-channel numpy array of the same size as the input image. - A callable (function) that generates a mask. The function should accept 'image' as its first argument, and can accept additional arguments specified in mask_params. Default: None |
mask_params | list[str] | Additional parameters to pass to the mask function. These parameters will be taken from the data dict passed to call. Default: () |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Note
- When mode='cv', OpenCV's equalizeHist() function is used.
- When mode='pil', Pillow's equalize() function is used.
- The 'by_channels' parameter determines whether equalization is applied to each color channel independently (True) or to the luminance channel only (False).
- If a mask is provided as a numpy array, it should have the same height and width as the input image.
- If a mask is provided as a function, it allows for dynamic mask generation based on the input image and additional parameters. This is useful for scenarios where the mask depends on the image content or external data (e.g., bounding boxes, segmentation masks).
Mask Function: When mask is a callable, it should have the following signature: mask_func(image, *args) -> np.ndarray
- image: The input image (numpy array)
- *args: Additional arguments as specified in mask_params
The function should return a numpy array of the same height and width as the input image,
where non-zero pixels indicate areas to be equalized.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>>
>>> # Using a static mask
>>> mask = np.random.randint(0, 2, (100, 100), dtype=np.uint8)
>>> transform = A.Equalize(mask=mask, p=1.0)
>>> result = transform(image=image)
>>>
>>> # Using a dynamic mask function
>>> def mask_func(image, bboxes):
... mask = np.ones_like(image[:, :, 0], dtype=np.uint8)
... for bbox in bboxes:
... x1, y1, x2, y2 = map(int, bbox)
... mask[y1:y2, x1:x2] = 0 # Exclude areas inside bounding boxes
... return mask
>>>
>>> transform = A.Equalize(mask=mask_func, mask_params=['bboxes'], p=1.0)
>>> bboxes = [(10, 10, 50, 50), (60, 60, 90, 90)] # Example bounding boxes
>>> result = transform(image=image, bboxes=bboxes)
References
- OpenCV equalizeHist: https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#ga7e54091f0c937d49bf84152a16f76d6e
- Pillow ImageOps.equalize: https://pillow.readthedocs.io/en/stable/reference/ImageOps.html#PIL.ImageOps.equalize
- Histogram Equalization: https://en.wikipedia.org/wiki/Histogram_equalization
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Equalize(ImageOnlyTransform):
"""Equalize the image histogram.
This transform applies histogram equalization to the input image. Histogram equalization
is a method in image processing of contrast adjustment using the image's histogram.
Args:
mode (Literal['cv', 'pil']): Use OpenCV or Pillow equalization method.
Default: 'cv'
by_channels (bool): If True, use equalization by channels separately,
else convert image to YCbCr representation and use equalization by `Y` channel.
Default: True
mask (np.ndarray, callable): If given, only the pixels selected by
the mask are included in the analysis. Can be:
- A 1-channel or 3-channel numpy array of the same size as the input image.
- A callable (function) that generates a mask. The function should accept 'image'
as its first argument, and can accept additional arguments specified in mask_params.
Default: None
mask_params (list[str]): Additional parameters to pass to the mask function.
These parameters will be taken from the data dict passed to __call__.
Default: ()
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Note:
- When mode='cv', OpenCV's equalizeHist() function is used.
- When mode='pil', Pillow's equalize() function is used.
- The 'by_channels' parameter determines whether equalization is applied to each color channel
independently (True) or to the luminance channel only (False).
- If a mask is provided as a numpy array, it should have the same height and width as the input image.
- If a mask is provided as a function, it allows for dynamic mask generation based on the input image
and additional parameters. This is useful for scenarios where the mask depends on the image content
or external data (e.g., bounding boxes, segmentation masks).
Mask Function:
When mask is a callable, it should have the following signature:
mask_func(image, *args) -> np.ndarray
- image: The input image (numpy array)
- *args: Additional arguments as specified in mask_params
The function should return a numpy array of the same height and width as the input image,
where non-zero pixels indicate areas to be equalized.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>>
>>> # Using a static mask
>>> mask = np.random.randint(0, 2, (100, 100), dtype=np.uint8)
>>> transform = A.Equalize(mask=mask, p=1.0)
>>> result = transform(image=image)
>>>
>>> # Using a dynamic mask function
>>> def mask_func(image, bboxes):
... mask = np.ones_like(image[:, :, 0], dtype=np.uint8)
... for bbox in bboxes:
... x1, y1, x2, y2 = map(int, bbox)
... mask[y1:y2, x1:x2] = 0 # Exclude areas inside bounding boxes
... return mask
>>>
>>> transform = A.Equalize(mask=mask_func, mask_params=['bboxes'], p=1.0)
>>> bboxes = [(10, 10, 50, 50), (60, 60, 90, 90)] # Example bounding boxes
>>> result = transform(image=image, bboxes=bboxes)
References:
- OpenCV equalizeHist: https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#ga7e54091f0c937d49bf84152a16f76d6e
- Pillow ImageOps.equalize: https://pillow.readthedocs.io/en/stable/reference/ImageOps.html#PIL.ImageOps.equalize
- Histogram Equalization: https://en.wikipedia.org/wiki/Histogram_equalization
"""
class InitSchema(BaseTransformInitSchema):
mode: ImageMode
by_channels: bool
mask: np.ndarray | Callable[..., Any] | None
mask_params: Sequence[str]
def __init__(
self,
mode: ImageMode = "cv",
by_channels: bool = True,
mask: np.ndarray | Callable[..., Any] | None = None,
mask_params: Sequence[str] = (),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.mode = mode
self.by_channels = by_channels
self.mask = mask
self.mask_params = mask_params
def apply(self, img: np.ndarray, mask: np.ndarray, **params: Any) -> np.ndarray:
return fmain.equalize(
img,
mode=self.mode,
by_channels=self.by_channels,
mask=mask,
)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
if not callable(self.mask):
return {"mask": self.mask}
mask_params = {"image": data["image"]}
for key in self.mask_params:
if key not in data:
raise KeyError(
f"Required parameter '{key}' for mask function is missing in data.",
)
mask_params[key] = data[key]
return {"mask": self.mask(**mask_params)}
@property
def targets_as_params(self) -> list[str]:
return [*list(self.mask_params)]
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "mode", "by_channels", "mask", "mask_params"
class FancyPCA
(alpha=0.1, p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply Fancy PCA augmentation to the input image.
This augmentation technique applies PCA (Principal Component Analysis) to the image's color channels, then adds multiples of the principal components to the image, with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from a Gaussian with mean 0 and standard deviation 'alpha'.
Parameters:
Name | Type | Description |
---|---|---|
alpha | tuple[float, float] | float | Standard deviation of the Gaussian distribution used to generate random noise for each principal component. If a single float is provided, it will be used for all channels. If a tuple of two floats (min, max) is provided, the standard deviation will be uniformly sampled from this range for each run. Default: 0.1. |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Number of channels: any
Note
- This augmentation is particularly effective for RGB images but can work with any number of channels.
- For grayscale images, it applies a simplified version of the augmentation.
- The transform preserves the mean of the image while adjusting the color/intensity variation.
- This implementation is based on the paper by Krizhevsky et al. and is similar to the one used in the original AlexNet paper.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.FancyPCA(alpha=0.1, p=1.0)
>>> result = transform(image=image)
>>> augmented_image = result["image"]
References
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
- https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class FancyPCA(ImageOnlyTransform):
"""Apply Fancy PCA augmentation to the input image.
This augmentation technique applies PCA (Principal Component Analysis) to the image's color channels,
then adds multiples of the principal components to the image, with magnitudes proportional to the
corresponding eigenvalues times a random variable drawn from a Gaussian with mean 0 and standard
deviation 'alpha'.
Args:
alpha (tuple[float, float] | float): Standard deviation of the Gaussian distribution used to generate
random noise for each principal component. If a single float is provided, it will be used for
all channels. If a tuple of two floats (min, max) is provided, the standard deviation will be
uniformly sampled from this range for each run. Default: 0.1.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
any
Note:
- This augmentation is particularly effective for RGB images but can work with any number of channels.
- For grayscale images, it applies a simplified version of the augmentation.
- The transform preserves the mean of the image while adjusting the color/intensity variation.
- This implementation is based on the paper by Krizhevsky et al. and is similar to the one used
in the original AlexNet paper.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.FancyPCA(alpha=0.1, p=1.0)
>>> result = transform(image=image)
>>> augmented_image = result["image"]
References:
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
- https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
"""
class InitSchema(BaseTransformInitSchema):
alpha: float = Field(ge=0)
def __init__(
self,
alpha: float = 0.1,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.alpha = alpha
def apply(
self,
img: np.ndarray,
alpha_vector: np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.fancy_pca(img, alpha_vector)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
shape = params["shape"]
num_channels = shape[-1] if len(shape) == NUM_MULTI_CHANNEL_DIMENSIONS else 1
alpha_vector = self.random_generator.normal(0, self.alpha, num_channels).astype(
np.float32,
)
return {"alpha_vector": alpha_vector}
def get_transform_init_args_names(self) -> tuple[str]:
return ("alpha",)
class FromFloat
(dtype='uint8', max_value=None, always_apply=None, p=1.0)
[view source on GitHub] ¶
Convert an image from floating point representation to the specified data type.
This transform is designed to convert images from a normalized floating-point representation (typically with values in the range [0, 1]) to other data types, scaling the values appropriately.
Parameters:
Name | Type | Description |
---|---|---|
dtype | str | The desired output data type. Supported types include 'uint8', 'uint16', 'uint32'. Default: 'uint8'. |
max_value | float | None | The maximum value for the output dtype. If None, the transform will attempt to infer the maximum value based on the dtype. Default: None. |
p | float | Probability of applying the transform. Default: 1.0. |
Targets
image, volume
Image types: float32, float64
Note
- This is the inverse transform for ToFloat.
- Input images are expected to be in floating point format with values in the range [0, 1].
- For integer output types (uint8, uint16, uint32), the function will scale the values to the appropriate range (e.g., 0-255 for uint8).
- For float output types (float32, float64), the values will remain in the [0, 1] range.
- The transform uses the
from_float
function internally, which ensures output values are within the valid range for the specified dtype.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> transform = A.FromFloat(dtype='uint8', max_value=None, p=1.0)
>>> image = np.random.rand(100, 100, 3).astype(np.float32) # Float image in [0, 1] range
>>> result = transform(image=image)
>>> uint8_image = result['image']
>>> assert uint8_image.dtype == np.uint8
>>> assert uint8_image.min() >= 0 and uint8_image.max() <= 255
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class FromFloat(ImageOnlyTransform):
"""Convert an image from floating point representation to the specified data type.
This transform is designed to convert images from a normalized floating-point representation
(typically with values in the range [0, 1]) to other data types, scaling the values appropriately.
Args:
dtype (str): The desired output data type. Supported types include 'uint8', 'uint16',
'uint32'. Default: 'uint8'.
max_value (float | None): The maximum value for the output dtype. If None, the transform
will attempt to infer the maximum value based on the dtype.
Default: None.
p (float): Probability of applying the transform. Default: 1.0.
Targets:
image, volume
Image types:
float32, float64
Note:
- This is the inverse transform for ToFloat.
- Input images are expected to be in floating point format with values in the range [0, 1].
- For integer output types (uint8, uint16, uint32), the function will scale the values
to the appropriate range (e.g., 0-255 for uint8).
- For float output types (float32, float64), the values will remain in the [0, 1] range.
- The transform uses the `from_float` function internally, which ensures output values
are within the valid range for the specified dtype.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> transform = A.FromFloat(dtype='uint8', max_value=None, p=1.0)
>>> image = np.random.rand(100, 100, 3).astype(np.float32) # Float image in [0, 1] range
>>> result = transform(image=image)
>>> uint8_image = result['image']
>>> assert uint8_image.dtype == np.uint8
>>> assert uint8_image.min() >= 0 and uint8_image.max() <= 255
"""
class InitSchema(BaseTransformInitSchema):
dtype: Literal["uint8", "uint16", "float32", "float64"]
max_value: float | None
def __init__(
self,
dtype: Literal["uint8", "uint16", "float32", "float64"] = "uint8",
max_value: float | None = None,
always_apply: bool | None = None,
p: float = 1.0,
):
super().__init__(p=p, always_apply=always_apply)
self.dtype = np.dtype(dtype)
self.max_value = max_value
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
return from_float(img, self.dtype, self.max_value)
def get_transform_init_args(self) -> dict[str, Any]:
return {"dtype": self.dtype.name, "max_value": self.max_value}
class GaussNoise
(var_limit=None, mean=None, std_range=(0.2, 0.44), mean_range=(0.0, 0.0), per_channel=True, noise_scale_factor=1, always_apply=None, p=0.5)
[view source on GitHub] ¶
Apply Gaussian noise to the input image.
Parameters:
Name | Type | Description |
---|---|---|
std_range | tuple[float, float] | Range for noise standard deviation as a fraction of the maximum value (255 for uint8 images or 1.0 for float images). Values should be in range [0, 1]. Default: (0.2, 0.44). |
mean_range | tuple[float, float] | Range for noise mean as a fraction of the maximum value (255 for uint8 images or 1.0 for float images). Values should be in range [-1, 1]. Default: (0.0, 0.0). |
var_limit | tuple[float, float] | float | [Deprecated] Variance range for noise. If var_limit is a single float value, the range will be (0, var_limit). Default: (10.0, 50.0). |
mean | float | [Deprecated] Mean of the noise. Default: 0. |
per_channel | bool | If True, noise will be sampled for each channel independently. Otherwise, the noise will be sampled once for all channels. Default: True. |
noise_scale_factor | float | Scaling factor for noise generation. Value should be in the range (0, 1]. When set to 1, noise is sampled for each pixel independently. If less, noise is sampled for a smaller size and resized to fit the shape of the image. Smaller values make the transform faster. Default: 1.0. |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Number of channels: Any
Note
- The noise parameters (std_range and mean_range) are normalized to [0, 1] range:
- For uint8 images, they are multiplied by 255
- For float32 images, they are used directly
- The behavior differs between old and new parameters:
- When using var_limit (deprecated): samples variance uniformly and takes sqrt to get std dev
- When using std_range: samples standard deviation directly (aligned with torchvision/kornia)
- Setting per_channel=False is faster but applies the same noise to all channels
- The noise_scale_factor parameter allows for a trade-off between transform speed and noise granularity
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (224, 224, 3), dtype=np.uint8)
>>>
>>> # Apply Gaussian noise with normalized std_range
>>> transform = A.GaussNoise(std_range=(0.1, 0.2), p=1.0) # 10-20% of max value
>>> noisy_image = transform(image=image)['image']
>>>
>>> # Using deprecated var_limit (will be converted to std_range)
>>> transform = A.GaussNoise(var_limit=(50.0, 100.0), mean=10, p=1.0)
>>> noisy_image = transform(image=image)['image']
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class GaussNoise(ImageOnlyTransform):
"""Apply Gaussian noise to the input image.
Args:
std_range (tuple[float, float]): Range for noise standard deviation as a fraction
of the maximum value (255 for uint8 images or 1.0 for float images).
Values should be in range [0, 1]. Default: (0.2, 0.44).
mean_range (tuple[float, float]): Range for noise mean as a fraction
of the maximum value (255 for uint8 images or 1.0 for float images).
Values should be in range [-1, 1]. Default: (0.0, 0.0).
var_limit (tuple[float, float] | float): [Deprecated] Variance range for noise.
If var_limit is a single float value, the range will be (0, var_limit).
Default: (10.0, 50.0).
mean (float): [Deprecated] Mean of the noise. Default: 0.
per_channel (bool): If True, noise will be sampled for each channel independently.
Otherwise, the noise will be sampled once for all channels. Default: True.
noise_scale_factor (float): Scaling factor for noise generation. Value should be in the range (0, 1].
When set to 1, noise is sampled for each pixel independently. If less, noise is sampled for a smaller size
and resized to fit the shape of the image. Smaller values make the transform faster. Default: 1.0.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
Any
Note:
- The noise parameters (std_range and mean_range) are normalized to [0, 1] range:
* For uint8 images, they are multiplied by 255
* For float32 images, they are used directly
- The behavior differs between old and new parameters:
* When using var_limit (deprecated): samples variance uniformly and takes sqrt to get std dev
* When using std_range: samples standard deviation directly (aligned with torchvision/kornia)
- Setting per_channel=False is faster but applies the same noise to all channels
- The noise_scale_factor parameter allows for a trade-off between transform speed and noise granularity
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (224, 224, 3), dtype=np.uint8)
>>>
>>> # Apply Gaussian noise with normalized std_range
>>> transform = A.GaussNoise(std_range=(0.1, 0.2), p=1.0) # 10-20% of max value
>>> noisy_image = transform(image=image)['image']
>>>
>>> # Using deprecated var_limit (will be converted to std_range)
>>> transform = A.GaussNoise(var_limit=(50.0, 100.0), mean=10, p=1.0)
>>> noisy_image = transform(image=image)['image']
"""
class InitSchema(BaseTransformInitSchema):
var_limit: ScaleFloatType | None
mean: float | None
std_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
AfterValidator(nondecreasing),
]
mean_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(-1, 1)),
AfterValidator(nondecreasing),
]
per_channel: bool
noise_scale_factor: float = Field(gt=0, le=1)
@model_validator(mode="after")
def check_range(self) -> Self:
if self.var_limit is not None:
warnings.warn("`var_limit` deprecated. Use `std_range` instead.", DeprecationWarning, stacklevel=2)
self.var_limit = to_tuple(self.var_limit, 0)
if self.var_limit[1] > 1:
# Convert legacy uint8 variance to normalized std dev
self.std_range = (math.sqrt(10 / 255), math.sqrt(50 / 255))
else:
# Already normalized variance, convert to std dev
self.std_range = (
math.sqrt(self.var_limit[0]),
math.sqrt(self.var_limit[1]),
)
if self.mean is not None:
warn("`mean` deprecated. Use `mean_range` instead.", DeprecationWarning, stacklevel=2)
if self.mean >= 1:
# Convert legacy uint8 mean to normalized range
self.mean_range = (self.mean / 255, self.mean / 255)
else:
# Already normalized mean
self.mean_range = (self.mean, self.mean)
return self
def __init__(
self,
var_limit: ScaleFloatType | None = None,
mean: float | None = None,
std_range: tuple[float, float] = (0.2, 0.44), # sqrt(10 / 255), sqrt(50 / 255)
mean_range: tuple[float, float] = (0.0, 0.0),
per_channel: bool = True,
noise_scale_factor: float = 1,
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.std_range = std_range
self.mean_range = mean_range
self.per_channel = per_channel
self.noise_scale_factor = noise_scale_factor
self.var_limit = var_limit
def apply(
self,
img: np.ndarray,
noise_map: np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.add_noise(img, noise_map)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, float]:
image = data["image"] if "image" in data else data["images"][0]
max_value = MAX_VALUES_BY_DTYPE[image.dtype]
if self.var_limit is not None:
# Legacy behavior: sample variance uniformly then take sqrt
var = self.py_random.uniform(self.std_range[0] ** 2, self.std_range[1] ** 2)
sigma = math.sqrt(var)
else:
# New behavior: sample std dev directly (aligned with torchvision/kornia)
sigma = self.py_random.uniform(*self.std_range)
mean = self.py_random.uniform(*self.mean_range)
noise_map = fmain.generate_noise(
noise_type="gaussian",
spatial_mode="per_pixel" if self.per_channel else "shared",
shape=image.shape,
params={"mean_range": (mean, mean), "std_range": (sigma, sigma)},
max_value=max_value,
approximation=self.noise_scale_factor,
random_generator=self.random_generator,
)
return {"noise_map": noise_map}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "std_range", "mean_range", "per_channel", "noise_scale_factor"
class GaussianParams
¶
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class HueSaturationValue
(hue_shift_limit=(-20, 20), sat_shift_limit=(-30, 30), val_shift_limit=(-20, 20), always_apply=None, p=0.5)
[view source on GitHub] ¶
Randomly change hue, saturation and value of the input image.
This transform adjusts the HSV (Hue, Saturation, Value) channels of an input RGB image. It allows for independent control over each channel, providing a wide range of color and brightness modifications.
Parameters:
Name | Type | Description |
---|---|---|
hue_shift_limit | float | tuple[float, float] | Range for changing hue. If a single float value is provided, the range will be (-hue_shift_limit, hue_shift_limit). Values should be in the range [-180, 180]. Default: (-20, 20). |
sat_shift_limit | float | tuple[float, float] | Range for changing saturation. If a single float value is provided, the range will be (-sat_shift_limit, sat_shift_limit). Values should be in the range [-255, 255]. Default: (-30, 30). |
val_shift_limit | float | tuple[float, float] | Range for changing value (brightness). If a single float value is provided, the range will be (-val_shift_limit, val_shift_limit). Values should be in the range [-255, 255]. Default: (-20, 20). |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: 3
Note
- The transform first converts the input RGB image to the HSV color space.
- Each channel (Hue, Saturation, Value) is adjusted independently.
- Hue is circular, so it wraps around at 180 degrees.
- For float32 images, the shift values are applied as percentages of the full range.
- This transform is particularly useful for color augmentation and simulating different lighting conditions.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.HueSaturationValue(
... hue_shift_limit=20,
... sat_shift_limit=30,
... val_shift_limit=20,
... p=0.7
... )
>>> result = transform(image=image)
>>> augmented_image = result["image"]
References
- HSV color space: https://en.wikipedia.org/wiki/HSL_and_HSV
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class HueSaturationValue(ImageOnlyTransform):
"""Randomly change hue, saturation and value of the input image.
This transform adjusts the HSV (Hue, Saturation, Value) channels of an input RGB image.
It allows for independent control over each channel, providing a wide range of color
and brightness modifications.
Args:
hue_shift_limit (float | tuple[float, float]): Range for changing hue.
If a single float value is provided, the range will be (-hue_shift_limit, hue_shift_limit).
Values should be in the range [-180, 180]. Default: (-20, 20).
sat_shift_limit (float | tuple[float, float]): Range for changing saturation.
If a single float value is provided, the range will be (-sat_shift_limit, sat_shift_limit).
Values should be in the range [-255, 255]. Default: (-30, 30).
val_shift_limit (float | tuple[float, float]): Range for changing value (brightness).
If a single float value is provided, the range will be (-val_shift_limit, val_shift_limit).
Values should be in the range [-255, 255]. Default: (-20, 20).
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
3
Note:
- The transform first converts the input RGB image to the HSV color space.
- Each channel (Hue, Saturation, Value) is adjusted independently.
- Hue is circular, so it wraps around at 180 degrees.
- For float32 images, the shift values are applied as percentages of the full range.
- This transform is particularly useful for color augmentation and simulating
different lighting conditions.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.HueSaturationValue(
... hue_shift_limit=20,
... sat_shift_limit=30,
... val_shift_limit=20,
... p=0.7
... )
>>> result = transform(image=image)
>>> augmented_image = result["image"]
References:
- HSV color space: https://en.wikipedia.org/wiki/HSL_and_HSV
"""
class InitSchema(BaseTransformInitSchema):
hue_shift_limit: SymmetricRangeType
sat_shift_limit: SymmetricRangeType
val_shift_limit: SymmetricRangeType
def __init__(
self,
hue_shift_limit: ScaleFloatType = (-20, 20),
sat_shift_limit: ScaleFloatType = (-30, 30),
val_shift_limit: ScaleFloatType = (-20, 20),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.hue_shift_limit = cast(tuple[float, float], hue_shift_limit)
self.sat_shift_limit = cast(tuple[float, float], sat_shift_limit)
self.val_shift_limit = cast(tuple[float, float], val_shift_limit)
def apply(
self,
img: np.ndarray,
hue_shift: int,
sat_shift: int,
val_shift: int,
**params: Any,
) -> np.ndarray:
if not is_rgb_image(img) and not is_grayscale_image(img):
msg = "HueSaturationValue transformation expects 1-channel or 3-channel images."
raise TypeError(msg)
return fmain.shift_hsv(img, hue_shift, sat_shift, val_shift)
def get_params(self) -> dict[str, float]:
return {
"hue_shift": self.py_random.uniform(*self.hue_shift_limit),
"sat_shift": self.py_random.uniform(*self.sat_shift_limit),
"val_shift": self.py_random.uniform(*self.val_shift_limit),
}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "hue_shift_limit", "sat_shift_limit", "val_shift_limit"
class ISONoise
(color_shift=(0.01, 0.05), intensity=(0.1, 0.5), always_apply=None, p=0.5)
[view source on GitHub] ¶
Applies camera sensor noise to the input image, simulating high ISO settings.
This transform adds random noise to an image, mimicking the effect of using high ISO settings in digital photography. It simulates two main components of ISO noise: 1. Color noise: random shifts in color hue 2. Luminance noise: random variations in pixel intensity
Parameters:
Name | Type | Description |
---|---|---|
color_shift | tuple[float, float] | Range for changing color hue. Values should be in the range [0, 1], where 1 represents a full 360° hue rotation. Default: (0.01, 0.05) |
intensity | tuple[float, float] | Range for the noise intensity. Higher values increase the strength of both color and luminance noise. Default: (0.1, 0.5) |
p | float | Probability of applying the transform. Default: 0.5 |
Targets
image, volume
Image types: uint8, float32
Number of channels: 3
Note
- This transform only works with RGB images. It will raise a TypeError if applied to non-RGB images.
- The color shift is applied in the HSV color space, affecting the hue channel.
- Luminance noise is added to all channels independently.
- This transform can be useful for data augmentation in low-light scenarios or when training models to be robust against noisy inputs.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ISONoise(color_shift=(0.01, 0.05), intensity=(0.1, 0.5), p=0.5)
>>> result = transform(image=image)
>>> noisy_image = result["image"]
References
- ISO noise in digital photography: https://en.wikipedia.org/wiki/Image_noise#In_digital_cameras
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ISONoise(ImageOnlyTransform):
"""Applies camera sensor noise to the input image, simulating high ISO settings.
This transform adds random noise to an image, mimicking the effect of using high ISO settings
in digital photography. It simulates two main components of ISO noise:
1. Color noise: random shifts in color hue
2. Luminance noise: random variations in pixel intensity
Args:
color_shift (tuple[float, float]): Range for changing color hue.
Values should be in the range [0, 1], where 1 represents a full 360° hue rotation.
Default: (0.01, 0.05)
intensity (tuple[float, float]): Range for the noise intensity.
Higher values increase the strength of both color and luminance noise.
Default: (0.1, 0.5)
p (float): Probability of applying the transform. Default: 0.5
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
3
Note:
- This transform only works with RGB images. It will raise a TypeError if applied to
non-RGB images.
- The color shift is applied in the HSV color space, affecting the hue channel.
- Luminance noise is added to all channels independently.
- This transform can be useful for data augmentation in low-light scenarios or when
training models to be robust against noisy inputs.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ISONoise(color_shift=(0.01, 0.05), intensity=(0.1, 0.5), p=0.5)
>>> result = transform(image=image)
>>> noisy_image = result["image"]
References:
- ISO noise in digital photography:
https://en.wikipedia.org/wiki/Image_noise#In_digital_cameras
"""
class InitSchema(BaseTransformInitSchema):
color_shift: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
AfterValidator(nondecreasing),
]
intensity: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, None)),
AfterValidator(nondecreasing),
]
def __init__(
self,
color_shift: tuple[float, float] = (0.01, 0.05),
intensity: tuple[float, float] = (0.1, 0.5),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.intensity = intensity
self.color_shift = color_shift
def apply(
self,
img: np.ndarray,
color_shift: float,
intensity: float,
random_seed: int,
**params: Any,
) -> np.ndarray:
non_rgb_error(img)
return fmain.iso_noise(
img,
color_shift,
intensity,
np.random.default_rng(random_seed),
)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
random_seed = self.random_generator.integers(0, 2**32 - 1)
return {
"color_shift": self.py_random.uniform(*self.color_shift),
"intensity": self.py_random.uniform(*self.intensity),
"random_seed": random_seed,
}
def get_transform_init_args_names(self) -> tuple[str, str]:
return "intensity", "color_shift"
class Illumination
(mode='linear', intensity_range=(0.01, 0.2), effect_type='both', angle_range=(0, 360), center_range=(0.1, 0.9), sigma_range=(0.2, 1.0), always_apply=None, p=0.5)
[view source on GitHub] ¶
Apply various illumination effects to the image.
This transform simulates different lighting conditions by applying controlled illumination patterns. It can create effects like: - Directional lighting (linear mode) - Corner shadows/highlights (corner mode) - Spotlights or local lighting (gaussian mode)
These effects can be used to: - Simulate natural lighting variations - Add dramatic lighting effects - Create synthetic shadows or highlights - Augment training data with different lighting conditions
Parameters:
Name | Type | Description |
---|---|---|
mode | Literal["linear", "corner", "gaussian"] | Type of illumination pattern: - 'linear': Creates a smooth gradient across the image, simulating directional lighting like sunlight through a window - 'corner': Applies gradient from any corner, simulating light source from a corner - 'gaussian': Creates a circular spotlight effect, simulating local light sources Default: 'linear' |
intensity_range | tuple[float, float] | Range for effect strength. Values between 0.01 and 0.2: - 0.01-0.05: Subtle lighting changes - 0.05-0.1: Moderate lighting effects - 0.1-0.2: Strong lighting effects Default: (0.01, 0.2) |
effect_type | str | Type of lighting change: - 'brighten': Only adds light (like a spotlight) - 'darken': Only removes light (like a shadow) - 'both': Randomly chooses between brightening and darkening Default: 'both' |
angle_range | tuple[float, float] | Range for gradient angle in degrees. Controls direction of linear gradient: - 0°: Left to right - 90°: Top to bottom - 180°: Right to left - 270°: Bottom to top Only used for 'linear' mode. Default: (0, 360) |
center_range | tuple[float, float] | Range for spotlight position. Values between 0 and 1 representing relative position: - (0, 0): Top-left corner - (1, 1): Bottom-right corner - (0.5, 0.5): Center of image Only used for 'gaussian' mode. Default: (0.1, 0.9) |
sigma_range | tuple[float, float] | Range for spotlight size. Values between 0.2 and 1.0: - 0.2: Small, focused spotlight - 0.5: Medium-sized light area - 1.0: Broad, soft lighting Only used for 'gaussian' mode. Default: (0.2, 1.0) |
p | float | Probability of applying the transform. Default: 0.5 |
Targets
image
Image types: uint8, float32
Examples:
>>> import albumentations as A
>>> # Simulate sunlight through window
>>> transform = A.Illumination(
... mode='linear',
... intensity_range=(0.05, 0.1),
... effect_type='brighten',
... angle_range=(30, 60)
... )
>>>
>>> # Create dramatic corner shadow
>>> transform = A.Illumination(
... mode='corner',
... intensity_range=(0.1, 0.2),
... effect_type='darken'
... )
>>>
>>> # Add multiple spotlights
>>> transform1 = A.Illumination(
... mode='gaussian',
... intensity_range=(0.05, 0.15),
... effect_type='brighten',
... center_range=(0.2, 0.4),
... sigma_range=(0.2, 0.3)
... )
>>> transform2 = A.Illumination(
... mode='gaussian',
... intensity_range=(0.05, 0.15),
... effect_type='darken',
... center_range=(0.6, 0.8),
... sigma_range=(0.3, 0.5)
... )
>>> transforms = A.Compose([transform1, transform2])
References
-
Lighting in Computer Vision: https://en.wikipedia.org/wiki/Lighting_in_computer_vision
-
Image-based lighting: https://en.wikipedia.org/wiki/Image-based_lighting
-
Similar implementation in Kornia: https://kornia.readthedocs.io/en/latest/augmentation.html#randomlinearillumination
-
Research on lighting augmentation: "Learning Deep Representations of Fine-grained Visual Descriptions" https://arxiv.org/abs/1605.05395
-
Photography lighting patterns: https://en.wikipedia.org/wiki/Lighting_pattern
Note
- The transform preserves image range and dtype
- Effects are applied multiplicatively to preserve texture
- Can be combined with other transforms for complex lighting scenarios
- Useful for training models to be robust to lighting variations
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Illumination(ImageOnlyTransform):
"""Apply various illumination effects to the image.
This transform simulates different lighting conditions by applying controlled
illumination patterns. It can create effects like:
- Directional lighting (linear mode)
- Corner shadows/highlights (corner mode)
- Spotlights or local lighting (gaussian mode)
These effects can be used to:
- Simulate natural lighting variations
- Add dramatic lighting effects
- Create synthetic shadows or highlights
- Augment training data with different lighting conditions
Args:
mode (Literal["linear", "corner", "gaussian"]): Type of illumination pattern:
- 'linear': Creates a smooth gradient across the image,
simulating directional lighting like sunlight
through a window
- 'corner': Applies gradient from any corner,
simulating light source from a corner
- 'gaussian': Creates a circular spotlight effect,
simulating local light sources
Default: 'linear'
intensity_range (tuple[float, float]): Range for effect strength.
Values between 0.01 and 0.2:
- 0.01-0.05: Subtle lighting changes
- 0.05-0.1: Moderate lighting effects
- 0.1-0.2: Strong lighting effects
Default: (0.01, 0.2)
effect_type (str): Type of lighting change:
- 'brighten': Only adds light (like a spotlight)
- 'darken': Only removes light (like a shadow)
- 'both': Randomly chooses between brightening and darkening
Default: 'both'
angle_range (tuple[float, float]): Range for gradient angle in degrees.
Controls direction of linear gradient:
- 0°: Left to right
- 90°: Top to bottom
- 180°: Right to left
- 270°: Bottom to top
Only used for 'linear' mode.
Default: (0, 360)
center_range (tuple[float, float]): Range for spotlight position.
Values between 0 and 1 representing relative position:
- (0, 0): Top-left corner
- (1, 1): Bottom-right corner
- (0.5, 0.5): Center of image
Only used for 'gaussian' mode.
Default: (0.1, 0.9)
sigma_range (tuple[float, float]): Range for spotlight size.
Values between 0.2 and 1.0:
- 0.2: Small, focused spotlight
- 0.5: Medium-sized light area
- 1.0: Broad, soft lighting
Only used for 'gaussian' mode.
Default: (0.2, 1.0)
p (float): Probability of applying the transform. Default: 0.5
Targets:
image
Image types:
uint8, float32
Examples:
>>> import albumentations as A
>>> # Simulate sunlight through window
>>> transform = A.Illumination(
... mode='linear',
... intensity_range=(0.05, 0.1),
... effect_type='brighten',
... angle_range=(30, 60)
... )
>>>
>>> # Create dramatic corner shadow
>>> transform = A.Illumination(
... mode='corner',
... intensity_range=(0.1, 0.2),
... effect_type='darken'
... )
>>>
>>> # Add multiple spotlights
>>> transform1 = A.Illumination(
... mode='gaussian',
... intensity_range=(0.05, 0.15),
... effect_type='brighten',
... center_range=(0.2, 0.4),
... sigma_range=(0.2, 0.3)
... )
>>> transform2 = A.Illumination(
... mode='gaussian',
... intensity_range=(0.05, 0.15),
... effect_type='darken',
... center_range=(0.6, 0.8),
... sigma_range=(0.3, 0.5)
... )
>>> transforms = A.Compose([transform1, transform2])
References:
- Lighting in Computer Vision:
https://en.wikipedia.org/wiki/Lighting_in_computer_vision
- Image-based lighting:
https://en.wikipedia.org/wiki/Image-based_lighting
- Similar implementation in Kornia:
https://kornia.readthedocs.io/en/latest/augmentation.html#randomlinearillumination
- Research on lighting augmentation:
"Learning Deep Representations of Fine-grained Visual Descriptions"
https://arxiv.org/abs/1605.05395
- Photography lighting patterns:
https://en.wikipedia.org/wiki/Lighting_pattern
Note:
- The transform preserves image range and dtype
- Effects are applied multiplicatively to preserve texture
- Can be combined with other transforms for complex lighting scenarios
- Useful for training models to be robust to lighting variations
"""
class InitSchema(BaseTransformInitSchema):
mode: Literal["linear", "corner", "gaussian"]
intensity_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0.01, 0.2)),
]
effect_type: Literal["brighten", "darken", "both"]
angle_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 360)),
]
center_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
]
sigma_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0.2, 1.0)),
]
def __init__(
self,
mode: Literal["linear", "corner", "gaussian"] = "linear",
intensity_range: tuple[float, float] = (0.01, 0.2),
effect_type: Literal["brighten", "darken", "both"] = "both",
angle_range: tuple[float, float] = (0, 360),
center_range: tuple[float, float] = (0.1, 0.9),
sigma_range: tuple[float, float] = (0.2, 1.0),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(always_apply=always_apply, p=p)
self.mode = mode
self.intensity_range = intensity_range
self.effect_type = effect_type
self.angle_range = angle_range
self.center_range = center_range
self.sigma_range = sigma_range
def get_params(self) -> dict[str, Any]:
intensity = self.py_random.uniform(*self.intensity_range)
# Determine if brightening or darkening
sign = 1 # brighten
if self.effect_type == "both":
sign = 1 if self.py_random.random() > 0.5 else -1
elif self.effect_type == "darken":
sign = -1
intensity *= sign
if self.mode == "linear":
angle = self.py_random.uniform(*self.angle_range)
return {
"intensity": intensity,
"angle": angle,
}
if self.mode == "corner":
corner = self.py_random.randint(0, 3) # Choose random corner
return {
"intensity": intensity,
"corner": corner,
}
x = self.py_random.uniform(*self.center_range)
y = self.py_random.uniform(*self.center_range)
sigma = self.py_random.uniform(*self.sigma_range)
return {
"intensity": intensity,
"center": (x, y),
"sigma": sigma,
}
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
if self.mode == "linear":
return fmain.apply_linear_illumination(
img,
intensity=params["intensity"],
angle=params["angle"],
)
if self.mode == "corner":
return fmain.apply_corner_illumination(
img,
intensity=params["intensity"],
corner=params["corner"],
)
return fmain.apply_gaussian_illumination(
img,
intensity=params["intensity"],
center=params["center"],
sigma=params["sigma"],
)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return (
"mode",
"intensity_range",
"effect_type",
"angle_range",
"center_range",
"sigma_range",
)
class ImageCompression
(quality_lower=None, quality_upper=None, compression_type='jpeg', quality_range=(99, 100), always_apply=None, p=0.5)
[view source on GitHub] ¶
Decrease image quality by applying JPEG or WebP compression.
This transform simulates the effect of saving an image with lower quality settings, which can introduce compression artifacts. It's useful for data augmentation and for testing model robustness against varying image qualities.
Parameters:
Name | Type | Description |
---|---|---|
quality_range | tuple[int, int] | Range for the compression quality. The values should be in [1, 100] range, where: - 1 is the lowest quality (maximum compression) - 100 is the highest quality (minimum compression) Default: (99, 100) |
compression_type | Literal["jpeg", "webp"] | Type of compression to apply. - "jpeg": JPEG compression - "webp": WebP compression Default: "jpeg" |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: Any
Note
- This transform expects images with 1, 3, or 4 channels.
- For JPEG compression, alpha channels (4th channel) will be ignored.
- WebP compression supports transparency (4 channels).
- The actual file is not saved to disk; the compression is simulated in memory.
- Lower quality values result in smaller file sizes but may introduce visible artifacts.
- This transform can be useful for:
- Data augmentation to improve model robustness
- Testing how models perform on images of varying quality
- Simulating images transmitted over low-bandwidth connections
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ImageCompression(quality_range=(50, 90), compression_type=0, p=1.0)
>>> result = transform(image=image)
>>> compressed_image = result["image"]
References
- JPEG compression: https://en.wikipedia.org/wiki/JPEG
- WebP compression: https://developers.google.com/speed/webp
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ImageCompression(ImageOnlyTransform):
"""Decrease image quality by applying JPEG or WebP compression.
This transform simulates the effect of saving an image with lower quality settings,
which can introduce compression artifacts. It's useful for data augmentation and
for testing model robustness against varying image qualities.
Args:
quality_range (tuple[int, int]): Range for the compression quality.
The values should be in [1, 100] range, where:
- 1 is the lowest quality (maximum compression)
- 100 is the highest quality (minimum compression)
Default: (99, 100)
compression_type (Literal["jpeg", "webp"]): Type of compression to apply.
- "jpeg": JPEG compression
- "webp": WebP compression
Default: "jpeg"
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
Any
Note:
- This transform expects images with 1, 3, or 4 channels.
- For JPEG compression, alpha channels (4th channel) will be ignored.
- WebP compression supports transparency (4 channels).
- The actual file is not saved to disk; the compression is simulated in memory.
- Lower quality values result in smaller file sizes but may introduce visible artifacts.
- This transform can be useful for:
* Data augmentation to improve model robustness
* Testing how models perform on images of varying quality
* Simulating images transmitted over low-bandwidth connections
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ImageCompression(quality_range=(50, 90), compression_type=0, p=1.0)
>>> result = transform(image=image)
>>> compressed_image = result["image"]
References:
- JPEG compression: https://en.wikipedia.org/wiki/JPEG
- WebP compression: https://developers.google.com/speed/webp
"""
class InitSchema(BaseTransformInitSchema):
quality_range: Annotated[
tuple[int, int],
AfterValidator(check_range_bounds(1, 100)),
AfterValidator(nondecreasing),
]
quality_lower: int | None = Field(
ge=1,
le=100,
)
quality_upper: int | None = Field(
ge=1,
le=100,
)
compression_type: Literal["jpeg", "webp"]
@model_validator(mode="after")
def validate_ranges(self) -> Self:
# Update the quality_range based on the non-None values of quality_lower and quality_upper
if self.quality_lower is not None or self.quality_upper is not None:
if self.quality_lower is not None:
warn(
"`quality_lower` is deprecated. Use `quality_range` as tuple"
" (quality_lower, quality_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
if self.quality_upper is not None:
warn(
"`quality_upper` is deprecated. Use `quality_range` as tuple"
" (quality_lower, quality_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
lower = self.quality_lower if self.quality_lower is not None else self.quality_range[0]
upper = self.quality_upper if self.quality_upper is not None else self.quality_range[1]
self.quality_range = (lower, upper)
# Clear the deprecated individual quality settings
self.quality_lower = None
self.quality_upper = None
# Validate the quality_range
if not (1 <= self.quality_range[0] <= MAX_JPEG_QUALITY and 1 <= self.quality_range[1] <= MAX_JPEG_QUALITY):
raise ValueError(
f"Quality range values should be within [1, {MAX_JPEG_QUALITY}] range.",
)
return self
def __init__(
self,
quality_lower: int | None = None,
quality_upper: int | None = None,
compression_type: Literal["jpeg", "webp"] = "jpeg",
quality_range: tuple[int, int] = (99, 100),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.quality_range = quality_range
self.compression_type = compression_type
def apply(
self,
img: np.ndarray,
quality: int,
image_type: Literal[".jpg", ".webp"],
**params: Any,
) -> np.ndarray:
return fmain.image_compression(img, quality, image_type)
def get_params(self) -> dict[str, int | str]:
if self.compression_type == "jpeg":
image_type = ".jpg"
elif self.compression_type == "webp":
image_type = ".webp"
else:
raise ValueError(f"Unknown image compression type: {self.compression_type}")
return {
"quality": self.py_random.randint(*self.quality_range),
"image_type": image_type,
}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "quality_range", "compression_type"
class InterpolationPydantic
¶
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
class InvertImg
[view source on GitHub] ¶
Invert the input image by subtracting pixel values from max values of the image types, i.e., 255 for uint8 and 1.0 for float32.
Parameters:
Name | Type | Description |
---|---|---|
p | probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Number of channels: Any
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class InvertImg(ImageOnlyTransform):
"""Invert the input image by subtracting pixel values from max values of the image types,
i.e., 255 for uint8 and 1.0 for float32.
Args:
p: probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
Any
"""
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
return fmain.invert(img)
def get_transform_init_args_names(self) -> tuple[()]:
return ()
class Lambda
(image=None, mask=None, keypoints=None, bboxes=None, name=None, always_apply=None, p=1.0)
[view source on GitHub] ¶
A flexible transformation class for using user-defined transformation functions per targets. Function signature must include **kwargs to accept optional arguments like interpolation method, image size, etc:
Parameters:
Name | Type | Description |
---|---|---|
image | Callable[..., Any] | None | Image transformation function. |
mask | Callable[..., Any] | None | Mask transformation function. |
keypoints | Callable[..., Any] | None | Keypoints transformation function. |
bboxes | Callable[..., Any] | None | BBoxes transformation function. |
p | float | probability of applying the transform. Default: 1.0. |
Targets
image, mask, bboxes, keypoints, volume, mask3d
Image types: uint8, float32
Number of channels: Any
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Lambda(NoOp):
"""A flexible transformation class for using user-defined transformation functions per targets.
Function signature must include **kwargs to accept optional arguments like interpolation method, image size, etc:
Args:
image: Image transformation function.
mask: Mask transformation function.
keypoints: Keypoints transformation function.
bboxes: BBoxes transformation function.
p: probability of applying the transform. Default: 1.0.
Targets:
image, mask, bboxes, keypoints, volume, mask3d
Image types:
uint8, float32
Number of channels:
Any
"""
def __init__(
self,
image: Callable[..., Any] | None = None,
mask: Callable[..., Any] | None = None,
keypoints: Callable[..., Any] | None = None,
bboxes: Callable[..., Any] | None = None,
name: str | None = None,
always_apply: bool | None = None,
p: float = 1.0,
):
super().__init__(p=p, always_apply=always_apply)
self.name = name
self.custom_apply_fns = {
target_name: fmain.noop for target_name in ("image", "mask", "keypoints", "bboxes", "global_label")
}
for target_name, custom_apply_fn in {
"image": image,
"mask": mask,
"keypoints": keypoints,
"bboxes": bboxes,
}.items():
if custom_apply_fn is not None:
if isinstance(custom_apply_fn, LambdaType) and custom_apply_fn.__name__ == "<lambda>":
warnings.warn(
"Using lambda is incompatible with multiprocessing. "
"Consider using regular functions or partial().",
stacklevel=2,
)
self.custom_apply_fns[target_name] = custom_apply_fn
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
fn = self.custom_apply_fns["image"]
return fn(img, **params)
def apply_to_mask(self, mask: np.ndarray, **params: Any) -> np.ndarray:
fn = self.custom_apply_fns["mask"]
return fn(mask, **params)
def apply_to_bboxes(self, bboxes: np.ndarray, **params: Any) -> np.ndarray:
is_ndarray = True
if not isinstance(bboxes, np.ndarray):
is_ndarray = False
bboxes = np.array(bboxes, dtype=np.float32)
fn = self.custom_apply_fns["bboxes"]
result = fn(bboxes, **params)
if not is_ndarray:
return result.tolist()
return result
def apply_to_keypoints(self, keypoints: np.ndarray, **params: Any) -> np.ndarray:
is_ndarray = True
if not isinstance(keypoints, np.ndarray):
is_ndarray = False
keypoints = np.array(keypoints, dtype=np.float32)
fn = self.custom_apply_fns["keypoints"]
result = fn(keypoints, **params)
if not is_ndarray:
return result.tolist()
return result
@classmethod
def is_serializable(cls) -> bool:
return False
def to_dict_private(self) -> dict[str, Any]:
if self.name is None:
msg = (
"To make a Lambda transform serializable you should provide the `name` argument, "
"e.g. `Lambda(name='my_transform', image=<some func>, ...)`."
)
raise ValueError(msg)
return {"__class_fullname__": self.get_class_fullname(), "__name__": self.name}
def __repr__(self) -> str:
state = {"name": self.name}
state.update(self.custom_apply_fns.items()) # type: ignore[arg-type]
state.update(self.get_base_init_args())
return f"{self.__class__.__name__}({format_args(state)})"
class LaplaceParams
¶
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Morphological
(scale=(2, 3), operation='dilation', p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply a morphological operation (dilation or erosion) to an image, with particular value for enhancing document scans.
Morphological operations modify the structure of the image. Dilation expands the white (foreground) regions in a binary or grayscale image, while erosion shrinks them. These operations are beneficial in document processing, for example: - Dilation helps in closing up gaps within text or making thin lines thicker, enhancing legibility for OCR (Optical Character Recognition). - Erosion can remove small white noise and detach connected objects, making the structure of larger objects more pronounced.
Parameters:
Name | Type | Description |
---|---|---|
scale | int or tuple/list of int | Specifies the size of the structuring element (kernel) used for the operation. - If an integer is provided, a square kernel of that size will be used. - If a tuple or list is provided, it should contain two integers representing the minimum and maximum sizes for the dilation kernel. |
operation | Literal["erosion", "dilation"] | The morphological operation to apply. Default is 'dilation'. |
p | float | The probability of applying this transformation. Default is 0.5. |
Targets
image, mask, keypoints, bboxes, volume, mask3d
Image types: uint8, float32
Examples:
>>> import albumentations as A
>>> transform = A.Compose([
>>> A.Morphological(scale=(2, 3), operation='dilation', p=0.5)
>>> ])
>>> image = transform(image=image)["image"]
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Morphological(DualTransform):
"""Apply a morphological operation (dilation or erosion) to an image,
with particular value for enhancing document scans.
Morphological operations modify the structure of the image.
Dilation expands the white (foreground) regions in a binary or grayscale image, while erosion shrinks them.
These operations are beneficial in document processing, for example:
- Dilation helps in closing up gaps within text or making thin lines thicker,
enhancing legibility for OCR (Optical Character Recognition).
- Erosion can remove small white noise and detach connected objects,
making the structure of larger objects more pronounced.
Args:
scale (int or tuple/list of int): Specifies the size of the structuring element (kernel) used for the operation.
- If an integer is provided, a square kernel of that size will be used.
- If a tuple or list is provided, it should contain two integers representing the minimum
and maximum sizes for the dilation kernel.
operation (Literal["erosion", "dilation"]): The morphological operation to apply.
Default is 'dilation'.
p (float, optional): The probability of applying this transformation. Default is 0.5.
Targets:
image, mask, keypoints, bboxes, volume, mask3d
Image types:
uint8, float32
Reference:
https://github.com/facebookresearch/nougat
Example:
>>> import albumentations as A
>>> transform = A.Compose([
>>> A.Morphological(scale=(2, 3), operation='dilation', p=0.5)
>>> ])
>>> image = transform(image=image)["image"]
"""
_targets = ALL_TARGETS
class InitSchema(BaseTransformInitSchema):
scale: OnePlusIntRangeType
operation: MorphologyMode
def __init__(
self,
scale: ScaleIntType = (2, 3),
operation: MorphologyMode = "dilation",
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.scale = cast(tuple[int, int], scale)
self.operation = operation
def apply(
self,
img: np.ndarray,
kernel: tuple[int, int],
**params: Any,
) -> np.ndarray:
return fmain.morphology(img, kernel, self.operation)
def apply_to_bboxes(
self,
bboxes: np.ndarray,
kernel: tuple[int, int],
**params: Any,
) -> np.ndarray:
image_shape = params["shape"]
denormalized_boxes = denormalize_bboxes(bboxes, image_shape)
result = fmain.bboxes_morphology(
denormalized_boxes,
kernel,
self.operation,
image_shape,
)
return normalize_bboxes(result, image_shape)
def apply_to_keypoints(
self,
keypoints: np.ndarray,
kernel: tuple[int, int],
**params: Any,
) -> np.ndarray:
return keypoints
def get_params(self) -> dict[str, float]:
return {
"kernel": cv2.getStructuringElement(cv2.MORPH_ELLIPSE, self.scale),
}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return ("scale", "operation")
class MultiplicativeNoise
(multiplier=(0.9, 1.1), per_channel=False, elementwise=False, p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply multiplicative noise to the input image.
This transform multiplies each pixel in the image by a random value or array of values, effectively creating a noise pattern that scales with the image intensity.
Parameters:
Name | Type | Description |
---|---|---|
multiplier | tuple[float, float] | The range for the random multiplier. Defines the range from which the multiplier is sampled. Default: (0.9, 1.1) |
per_channel | bool | If True, use a different random multiplier for each channel. If False, use the same multiplier for all channels. Setting this to False is slightly faster. Default: False |
elementwise | bool | If True, generates a unique multiplier for each pixel. If False, generates a single multiplier (or one per channel if per_channel=True). Default: False |
p | float | Probability of applying the transform. Default: 0.5 |
Targets
image, volume
Image types: uint8, float32
Number of channels: Any
Note
- When elementwise=False and per_channel=False, a single multiplier is applied to the entire image.
- When elementwise=False and per_channel=True, each channel gets a different multiplier.
- When elementwise=True and per_channel=False, each pixel gets the same multiplier across all channels.
- When elementwise=True and per_channel=True, each pixel in each channel gets a unique multiplier.
- Setting per_channel=False is slightly faster, especially for larger images.
- This transform can be used to simulate various lighting conditions or to create noise that scales with image intensity.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.MultiplicativeNoise(multiplier=(0.9, 1.1), per_channel=True, p=1.0)
>>> result = transform(image=image)
>>> noisy_image = result["image"]
References
- Multiplicative noise: https://en.wikipedia.org/wiki/Multiplicative_noise
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class MultiplicativeNoise(ImageOnlyTransform):
"""Apply multiplicative noise to the input image.
This transform multiplies each pixel in the image by a random value or array of values,
effectively creating a noise pattern that scales with the image intensity.
Args:
multiplier (tuple[float, float]): The range for the random multiplier.
Defines the range from which the multiplier is sampled.
Default: (0.9, 1.1)
per_channel (bool): If True, use a different random multiplier for each channel.
If False, use the same multiplier for all channels.
Setting this to False is slightly faster.
Default: False
elementwise (bool): If True, generates a unique multiplier for each pixel.
If False, generates a single multiplier (or one per channel if per_channel=True).
Default: False
p (float): Probability of applying the transform. Default: 0.5
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
Any
Note:
- When elementwise=False and per_channel=False, a single multiplier is applied to the entire image.
- When elementwise=False and per_channel=True, each channel gets a different multiplier.
- When elementwise=True and per_channel=False, each pixel gets the same multiplier across all channels.
- When elementwise=True and per_channel=True, each pixel in each channel gets a unique multiplier.
- Setting per_channel=False is slightly faster, especially for larger images.
- This transform can be used to simulate various lighting conditions or to create noise that
scales with image intensity.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.MultiplicativeNoise(multiplier=(0.9, 1.1), per_channel=True, p=1.0)
>>> result = transform(image=image)
>>> noisy_image = result["image"]
References:
- Multiplicative noise: https://en.wikipedia.org/wiki/Multiplicative_noise
"""
class InitSchema(BaseTransformInitSchema):
multiplier: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, None)),
AfterValidator(nondecreasing),
]
per_channel: bool
elementwise: bool
def __init__(
self,
multiplier: ScaleFloatType = (0.9, 1.1),
per_channel: bool = False,
elementwise: bool = False,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.multiplier = cast(tuple[float, float], multiplier)
self.elementwise = elementwise
self.per_channel = per_channel
def apply(
self,
img: np.ndarray,
multiplier: float | np.ndarray,
**kwargs: Any,
) -> np.ndarray:
return multiply(img, multiplier)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
image = data["image"] if "image" in data else data["images"][0]
num_channels = get_num_channels(image)
if self.elementwise:
shape = image.shape if self.per_channel else (*image.shape[:2], 1)
else:
shape = (num_channels,) if self.per_channel else (1,)
multiplier = self.random_generator.uniform(
self.multiplier[0],
self.multiplier[1],
shape,
).astype(np.float32)
if not self.per_channel and num_channels > 1:
# Replicate the multiplier for all channels if not per_channel
multiplier = np.repeat(multiplier, num_channels, axis=-1)
if not self.elementwise and self.per_channel:
# Reshape to broadcast correctly when not elementwise but per_channel
multiplier = multiplier.reshape(1, 1, -1)
if multiplier.shape != image.shape:
multiplier = multiplier.squeeze()
return {"multiplier": multiplier}
def get_transform_init_args_names(self) -> tuple[str, str, str]:
return "multiplier", "elementwise", "per_channel"
class NoiseParamsBase
¶
Base class for all noise parameter models.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
class Normalize
(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, normalization='standard', always_apply=None, p=1.0)
[view source on GitHub] ¶
Applies various normalization techniques to an image. The specific normalization technique can be selected with the normalization
parameter.
Standard normalization is applied using the formula: img = (img - mean * max_pixel_value) / (std * max_pixel_value)
. Other normalization techniques adjust the image based on global or per-channel statistics, or scale pixel values to a specified range.
Parameters:
Name | Type | Description |
---|---|---|
mean | ColorType | None | Mean values for standard normalization. For "standard" normalization, the default values are ImageNet mean values: (0.485, 0.456, 0.406). |
std | ColorType | None | Standard deviation values for standard normalization. For "standard" normalization, the default values are ImageNet standard deviation :(0.229, 0.224, 0.225). |
max_pixel_value | float | None | Maximum possible pixel value, used for scaling in standard normalization. Defaults to 255.0. |
normalization | Literal["standard", "image", "image_per_channel", "min_max", "min_max_per_channel"]) Specifies the normalization technique to apply. Defaults to "standard". - "standard" | Applies the formula |
p | float | Probability of applying the transform. Defaults to 1.0. |
Targets
image
Image types: uint8, float32
Note
- For "standard" normalization,
mean
,std
, andmax_pixel_value
must be provided. - For other normalization types, these parameters are ignored.
- For inception normalization, use mean values of (0.5, 0.5, 0.5).
- For YOLO normalization, use mean values of (0, 0, 0) and std values of (1, 1, 1).
- This transform is often used as a final step in image preprocessing pipelines to prepare images for neural network input.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> # Standard ImageNet normalization
>>> transform = A.Normalize(
... mean=(0.485, 0.456, 0.406),
... std=(0.229, 0.224, 0.225),
... max_pixel_value=255.0,
... p=1.0
... )
>>> normalized_image = transform(image=image)["image"]
>>>
>>> # Min-max normalization
>>> transform_minmax = A.Normalize(normalization="min_max", p=1.0)
>>> normalized_image_minmax = transform_minmax(image=image)["image"]
References
- ImageNet mean and std: https://pytorch.org/vision/stable/models.html
- Inception preprocessing: https://keras.io/api/applications/inceptionv3/
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Normalize(ImageOnlyTransform):
"""Applies various normalization techniques to an image. The specific normalization technique can be selected
with the `normalization` parameter.
Standard normalization is applied using the formula:
`img = (img - mean * max_pixel_value) / (std * max_pixel_value)`.
Other normalization techniques adjust the image based on global or per-channel statistics,
or scale pixel values to a specified range.
Args:
mean (ColorType | None): Mean values for standard normalization.
For "standard" normalization, the default values are ImageNet mean values: (0.485, 0.456, 0.406).
std (ColorType | None): Standard deviation values for standard normalization.
For "standard" normalization, the default values are ImageNet standard deviation :(0.229, 0.224, 0.225).
max_pixel_value (float | None): Maximum possible pixel value, used for scaling in standard normalization.
Defaults to 255.0.
normalization (Literal["standard", "image", "image_per_channel", "min_max", "min_max_per_channel"])
Specifies the normalization technique to apply. Defaults to "standard".
- "standard": Applies the formula `(img - mean * max_pixel_value) / (std * max_pixel_value)`.
The default mean and std are based on ImageNet. You can use mean and std values of (0.5, 0.5, 0.5)
for inception normalization. And mean values of (0, 0, 0) and std values of (1, 1, 1) for YOLO.
- "image": Normalizes the whole image based on its global mean and standard deviation.
- "image_per_channel": Normalizes the image per channel based on each channel's mean and standard deviation.
- "min_max": Scales the image pixel values to a [0, 1] range based on the global
minimum and maximum pixel values.
- "min_max_per_channel": Scales each channel of the image pixel values to a [0, 1]
range based on the per-channel minimum and maximum pixel values.
p (float): Probability of applying the transform. Defaults to 1.0.
Targets:
image
Image types:
uint8, float32
Note:
- For "standard" normalization, `mean`, `std`, and `max_pixel_value` must be provided.
- For other normalization types, these parameters are ignored.
- For inception normalization, use mean values of (0.5, 0.5, 0.5).
- For YOLO normalization, use mean values of (0, 0, 0) and std values of (1, 1, 1).
- This transform is often used as a final step in image preprocessing pipelines to
prepare images for neural network input.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> # Standard ImageNet normalization
>>> transform = A.Normalize(
... mean=(0.485, 0.456, 0.406),
... std=(0.229, 0.224, 0.225),
... max_pixel_value=255.0,
... p=1.0
... )
>>> normalized_image = transform(image=image)["image"]
>>>
>>> # Min-max normalization
>>> transform_minmax = A.Normalize(normalization="min_max", p=1.0)
>>> normalized_image_minmax = transform_minmax(image=image)["image"]
References:
- ImageNet mean and std: https://pytorch.org/vision/stable/models.html
- Inception preprocessing: https://keras.io/api/applications/inceptionv3/
"""
class InitSchema(BaseTransformInitSchema):
mean: ColorType | None
std: ColorType | None
max_pixel_value: float | None
normalization: Literal[
"standard",
"image",
"image_per_channel",
"min_max",
"min_max_per_channel",
]
@model_validator(mode="after")
def validate_normalization(self) -> Self:
if (
self.mean is None
or self.std is None
or (self.max_pixel_value is None and self.normalization == "standard")
):
raise ValueError(
"mean, std, and max_pixel_value must be provided for standard normalization.",
)
return self
def __init__(
self,
mean: ColorType | None = (0.485, 0.456, 0.406),
std: ColorType | None = (0.229, 0.224, 0.225),
max_pixel_value: float | None = 255.0,
normalization: Literal[
"standard",
"image",
"image_per_channel",
"min_max",
"min_max_per_channel",
] = "standard",
always_apply: bool | None = None,
p: float = 1.0,
):
super().__init__(p=p, always_apply=always_apply)
self.mean = mean
self.mean_np = np.array(mean, dtype=np.float32) * max_pixel_value
self.std = std
self.denominator = np.reciprocal(
np.array(std, dtype=np.float32) * max_pixel_value,
)
self.max_pixel_value = max_pixel_value
self.normalization = normalization
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
if self.normalization == "standard":
return normalize(
img,
self.mean_np,
self.denominator,
)
return normalize_per_image(img, self.normalization)
@batch_transform("channel", has_batch_dim=True, has_depth_dim=False)
def apply_to_images(self, images: np.ndarray, **params: Any) -> np.ndarray:
return self.apply(images, **params)
@batch_transform("channel", has_batch_dim=False, has_depth_dim=True)
def apply_to_volume(self, volume: np.ndarray, **params: Any) -> np.ndarray:
return self.apply(volume, **params)
@batch_transform("channel", has_batch_dim=True, has_depth_dim=True)
def apply_to_volumes(self, volumes: np.ndarray, **params: Any) -> np.ndarray:
return self.apply(volumes, **params)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "mean", "std", "max_pixel_value", "normalization"
class PixelDropout
(dropout_prob=0.01, per_channel=False, drop_value=0, mask_drop_value=None, p=0.5, always_apply=None)
[view source on GitHub] ¶
Drops random pixels from the image.
This transform randomly sets pixels in the image to a specified value, effectively "dropping out" those pixels. It can be applied to both the image and its corresponding mask.
Parameters:
Name | Type | Description |
---|---|---|
dropout_prob | float | Probability of dropping out each pixel. Should be in the range [0, 1]. Default: 0.01 |
per_channel | bool | If True, the dropout mask will be generated independently for each channel. If False, the same dropout mask will be applied to all channels. Default: False |
drop_value | float | Sequence[float] | None | Value to assign to the dropped pixels. If None, the value will be randomly sampled for each application: - For uint8 images: Random integer in [0, 255] - For float32 images: Random float in [0, 1] If a single number, that value will be used for all dropped pixels. If a sequence, it should contain one value per channel. Default: 0 |
mask_drop_value | float | Sequence[float] | None | Value to assign to dropped pixels in the mask. If None, the mask will remain unchanged. If a single number, that value will be used for all dropped pixels in the mask. If a sequence, it should contain one value per channel of the mask. Note: Only applicable when per_channel=False. Default: None |
always_apply | bool | If True, the transform will always be applied. Default: False |
p | float | Probability of applying the transform. Should be in the range [0, 1]. Default: 0.5 |
Targets
image, mask, bboxes, keypoints, volume, mask3d
Image types: uint8, float32
Note
- When applied to bounding boxes, this transform may cause some boxes to have zero area if all pixels within the box are dropped. Such boxes will be removed.
- When applied to keypoints, keypoints that fall on dropped pixels will be removed if the keypoint processor is configured to remove invisible keypoints.
- The 'per_channel' option is not supported for mask dropout. If you need to drop pixels in a multi-channel mask independently, consider applying this transform multiple times with per_channel=False.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> mask = np.random.randint(0, 2, (100, 100), dtype=np.uint8)
>>> transform = A.PixelDropout(dropout_prob=0.1, per_channel=True, p=1.0)
>>> result = transform(image=image, mask=mask)
>>> dropped_image, dropped_mask = result['image'], result['mask']
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class PixelDropout(DualTransform):
"""Drops random pixels from the image.
This transform randomly sets pixels in the image to a specified value, effectively "dropping out" those pixels.
It can be applied to both the image and its corresponding mask.
Args:
dropout_prob (float): Probability of dropping out each pixel. Should be in the range [0, 1].
Default: 0.01
per_channel (bool): If True, the dropout mask will be generated independently for each channel.
If False, the same dropout mask will be applied to all channels.
Default: False
drop_value (float | Sequence[float] | None): Value to assign to the dropped pixels.
If None, the value will be randomly sampled for each application:
- For uint8 images: Random integer in [0, 255]
- For float32 images: Random float in [0, 1]
If a single number, that value will be used for all dropped pixels.
If a sequence, it should contain one value per channel.
Default: 0
mask_drop_value (float | Sequence[float] | None): Value to assign to dropped pixels in the mask.
If None, the mask will remain unchanged.
If a single number, that value will be used for all dropped pixels in the mask.
If a sequence, it should contain one value per channel of the mask.
Note: Only applicable when per_channel=False.
Default: None
always_apply (bool): If True, the transform will always be applied.
Default: False
p (float): Probability of applying the transform. Should be in the range [0, 1].
Default: 0.5
Targets:
image, mask, bboxes, keypoints, volume, mask3d
Image types:
uint8, float32
Note:
- When applied to bounding boxes, this transform may cause some boxes to have zero area
if all pixels within the box are dropped. Such boxes will be removed.
- When applied to keypoints, keypoints that fall on dropped pixels will be removed if
the keypoint processor is configured to remove invisible keypoints.
- The 'per_channel' option is not supported for mask dropout. If you need to drop pixels
in a multi-channel mask independently, consider applying this transform multiple times
with per_channel=False.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> mask = np.random.randint(0, 2, (100, 100), dtype=np.uint8)
>>> transform = A.PixelDropout(dropout_prob=0.1, per_channel=True, p=1.0)
>>> result = transform(image=image, mask=mask)
>>> dropped_image, dropped_mask = result['image'], result['mask']
"""
class InitSchema(BaseTransformInitSchema):
dropout_prob: ProbabilityType
per_channel: bool
drop_value: ScaleFloatType | None
mask_drop_value: ScaleFloatType | None
@model_validator(mode="after")
def validate_mask_drop_value(self) -> Self:
if self.mask_drop_value is not None and self.per_channel:
msg = "PixelDropout supports mask only with per_channel=False."
raise ValueError(msg)
return self
_targets = ALL_TARGETS
def __init__(
self,
dropout_prob: float = 0.01,
per_channel: bool = False,
drop_value: ScaleFloatType | None = 0,
mask_drop_value: ScaleFloatType | None = None,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.dropout_prob = dropout_prob
self.per_channel = per_channel
self.drop_value = drop_value
self.mask_drop_value = mask_drop_value
def apply(
self,
img: np.ndarray,
drop_mask: np.ndarray,
drop_value: float | Sequence[float],
**params: Any,
) -> np.ndarray:
return fmain.pixel_dropout(img, drop_mask, drop_value)
def apply_to_mask(
self,
mask: np.ndarray,
drop_mask: np.ndarray,
**params: Any,
) -> np.ndarray:
if self.mask_drop_value is None:
return mask
if mask.ndim == MONO_CHANNEL_DIMENSIONS:
drop_mask = np.squeeze(drop_mask)
return fmain.pixel_dropout(mask, drop_mask, self.mask_drop_value)
def apply_to_bboxes(
self,
bboxes: np.ndarray,
drop_mask: np.ndarray | None,
**params: Any,
) -> np.ndarray:
if drop_mask is None or self.per_channel:
return bboxes
processor = cast(BboxProcessor, self.get_processor("bboxes"))
if processor is None:
return bboxes
image_shape = params["shape"][:2]
denormalized_bboxes = denormalize_bboxes(bboxes, image_shape)
result = fdropout.mask_dropout_bboxes(
denormalized_bboxes,
drop_mask,
image_shape,
processor.params.min_area,
processor.params.min_visibility,
)
return normalize_bboxes(result, image_shape)
def apply_to_keypoints(
self,
keypoints: np.ndarray,
drop_mask: np.ndarray | None,
**params: Any,
) -> np.ndarray:
if drop_mask is None or self.per_channel:
return keypoints
processor = cast(KeypointsProcessor, self.get_processor("keypoints"))
if processor is None or not processor.params.remove_invisible:
return keypoints
return fdropout.mask_dropout_keypoints(keypoints, drop_mask)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
image = data["image"] if "image" in data else data["images"][0]
shape = image.shape if self.per_channel else image.shape[:2]
# Use choice to create boolean matrix, if we will use binomial after that we will need type conversion
drop_mask = self.random_generator.choice(
[True, False],
shape,
p=[self.dropout_prob, 1 - self.dropout_prob],
)
drop_value: float | Sequence[float] | np.ndarray
if drop_mask.ndim != image.ndim:
drop_mask = np.expand_dims(drop_mask, -1)
if self.drop_value is None:
drop_shape = 1 if is_grayscale_image(image) else int(image.shape[-1])
if image.dtype == np.uint8:
drop_value = self.random_generator.integers(
0,
int(MAX_VALUES_BY_DTYPE[image.dtype]),
size=drop_shape,
dtype=image.dtype,
)
elif image.dtype == np.float32:
drop_value = self.random_generator.uniform(
0,
1,
size=drop_shape,
).astype(image.dtype)
else:
raise ValueError(f"Unsupported dtype: {image.dtype}")
else:
drop_value = self.drop_value
return {"drop_mask": drop_mask, "drop_value": drop_value}
def get_transform_init_args_names(self) -> tuple[str, str, str, str]:
return ("dropout_prob", "per_channel", "drop_value", "mask_drop_value")
class PlanckianJitter
(mode='blackbody', temperature_limit=None, sampling_method='uniform', p=0.5, always_apply=None)
[view source on GitHub] ¶
Applies Planckian Jitter to the input image, simulating color temperature variations in illumination.
This transform adjusts the color of an image to mimic the effect of different color temperatures of light sources, based on Planck's law of black body radiation. It can simulate the appearance of an image under various lighting conditions, from warm (reddish) to cool (bluish) color casts.
PlanckianJitter vs. ColorJitter: PlanckianJitter is fundamentally different from ColorJitter in its approach and use cases: 1. Physics-based: PlanckianJitter is grounded in the physics of light, simulating real-world color temperature changes. ColorJitter applies arbitrary color adjustments. 2. Natural effects: This transform produces color shifts that correspond to natural lighting variations, making it ideal for outdoor scene simulation or color constancy problems. 3. Single parameter: Color changes are controlled by a single, physically meaningful parameter (color temperature), unlike ColorJitter's multiple abstract parameters. 4. Correlated changes: Color shifts are correlated across channels in a way that mimics natural light, whereas ColorJitter can make independent channel adjustments.
When to use PlanckianJitter: - Simulating different times of day or lighting conditions in outdoor scenes - Augmenting data for computer vision tasks that need to be robust to natural lighting changes - Preparing synthetic data to better match real-world lighting variations - Color constancy research or applications - When you need physically plausible color variations rather than arbitrary color changes
The logic behind PlanckianJitter: As the color temperature increases: 1. Lower temperatures (around 3000K) produce warm, reddish tones, simulating sunset or incandescent lighting. 2. Mid-range temperatures (around 5500K) correspond to daylight. 3. Higher temperatures (above 7000K) result in cool, bluish tones, similar to overcast sky or shade. This progression mimics the natural variation of sunlight throughout the day and in different weather conditions.
Parameters:
Name | Type | Description |
---|---|---|
mode | Literal["blackbody", "cied"] | The mode of the transformation. - "blackbody": Simulates blackbody radiation color changes. - "cied": Uses the CIE D illuminant series for color temperature simulation. Default: "blackbody" |
temperature_limit | tuple[int, int] | None | The range of color temperatures (in Kelvin) to sample from. - For "blackbody" mode: Should be within [3000K, 15000K]. Default: (3000, 15000) - For "cied" mode: Should be within [4000K, 15000K]. Default: (4000, 15000) If None, the default ranges will be used based on the selected mode. Higher temperatures produce cooler (bluish) images, lower temperatures produce warmer (reddish) images. |
sampling_method | Literal["uniform", "gaussian"] | Method to sample the temperature. - "uniform": Samples uniformly across the specified range. - "gaussian": Samples from a Gaussian distribution centered at 6500K (approximate daylight). Default: "uniform" |
p | float | Probability of applying the transform. Default: 0.5 |
Targets
image
Image types: uint8, float32
Number of channels: 3
Note
- The transform preserves the overall brightness of the image while shifting its color.
- The "blackbody" mode provides a wider range of color shifts, especially in the lower (warmer) temperatures.
- The "cied" mode is based on standard illuminants and may provide more realistic daylight variations.
- The Gaussian sampling method tends to produce more subtle variations, as it's centered around daylight.
- Unlike ColorJitter, this transform ensures that color changes are physically plausible and correlated across channels, maintaining the natural appearance of the scene under different lighting conditions.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> transform = A.PlanckianJitter(mode="blackbody",
... temperature_range=(3000, 9000),
... sampling_method="uniform",
... p=1.0)
>>> result = transform(image=image)
>>> jittered_image = result["image"]
References
- Planck's law: https://en.wikipedia.org/wiki/Planck%27s_law
- CIE Standard Illuminants: https://en.wikipedia.org/wiki/Standard_illuminant
- Color temperature: https://en.wikipedia.org/wiki/Color_temperature
- Implementation inspired by: https://github.com/TheZino/PlanckianJitter
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class PlanckianJitter(ImageOnlyTransform):
"""Applies Planckian Jitter to the input image, simulating color temperature variations in illumination.
This transform adjusts the color of an image to mimic the effect of different color temperatures
of light sources, based on Planck's law of black body radiation. It can simulate the appearance
of an image under various lighting conditions, from warm (reddish) to cool (bluish) color casts.
PlanckianJitter vs. ColorJitter:
PlanckianJitter is fundamentally different from ColorJitter in its approach and use cases:
1. Physics-based: PlanckianJitter is grounded in the physics of light, simulating real-world
color temperature changes. ColorJitter applies arbitrary color adjustments.
2. Natural effects: This transform produces color shifts that correspond to natural lighting
variations, making it ideal for outdoor scene simulation or color constancy problems.
3. Single parameter: Color changes are controlled by a single, physically meaningful parameter
(color temperature), unlike ColorJitter's multiple abstract parameters.
4. Correlated changes: Color shifts are correlated across channels in a way that mimics natural
light, whereas ColorJitter can make independent channel adjustments.
When to use PlanckianJitter:
- Simulating different times of day or lighting conditions in outdoor scenes
- Augmenting data for computer vision tasks that need to be robust to natural lighting changes
- Preparing synthetic data to better match real-world lighting variations
- Color constancy research or applications
- When you need physically plausible color variations rather than arbitrary color changes
The logic behind PlanckianJitter:
As the color temperature increases:
1. Lower temperatures (around 3000K) produce warm, reddish tones, simulating sunset or incandescent lighting.
2. Mid-range temperatures (around 5500K) correspond to daylight.
3. Higher temperatures (above 7000K) result in cool, bluish tones, similar to overcast sky or shade.
This progression mimics the natural variation of sunlight throughout the day and in different weather conditions.
Args:
mode (Literal["blackbody", "cied"]): The mode of the transformation.
- "blackbody": Simulates blackbody radiation color changes.
- "cied": Uses the CIE D illuminant series for color temperature simulation.
Default: "blackbody"
temperature_limit (tuple[int, int] | None): The range of color temperatures (in Kelvin) to sample from.
- For "blackbody" mode: Should be within [3000K, 15000K]. Default: (3000, 15000)
- For "cied" mode: Should be within [4000K, 15000K]. Default: (4000, 15000)
If None, the default ranges will be used based on the selected mode.
Higher temperatures produce cooler (bluish) images, lower temperatures produce warmer (reddish) images.
sampling_method (Literal["uniform", "gaussian"]): Method to sample the temperature.
- "uniform": Samples uniformly across the specified range.
- "gaussian": Samples from a Gaussian distribution centered at 6500K (approximate daylight).
Default: "uniform"
p (float): Probability of applying the transform. Default: 0.5
Targets:
image
Image types:
uint8, float32
Number of channels:
3
Note:
- The transform preserves the overall brightness of the image while shifting its color.
- The "blackbody" mode provides a wider range of color shifts, especially in the lower (warmer) temperatures.
- The "cied" mode is based on standard illuminants and may provide more realistic daylight variations.
- The Gaussian sampling method tends to produce more subtle variations, as it's centered around daylight.
- Unlike ColorJitter, this transform ensures that color changes are physically plausible and correlated
across channels, maintaining the natural appearance of the scene under different lighting conditions.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> transform = A.PlanckianJitter(mode="blackbody",
... temperature_range=(3000, 9000),
... sampling_method="uniform",
... p=1.0)
>>> result = transform(image=image)
>>> jittered_image = result["image"]
References:
- Planck's law: https://en.wikipedia.org/wiki/Planck%27s_law
- CIE Standard Illuminants: https://en.wikipedia.org/wiki/Standard_illuminant
- Color temperature: https://en.wikipedia.org/wiki/Color_temperature
- Implementation inspired by: https://github.com/TheZino/PlanckianJitter
"""
class InitSchema(BaseTransformInitSchema):
mode: Literal["blackbody", "cied"]
temperature_limit: Annotated[tuple[int, int], AfterValidator(nondecreasing)] | None
sampling_method: Literal["uniform", "gaussian"]
@model_validator(mode="after")
def validate_temperature(self) -> Self:
max_temp = int(PLANKIAN_JITTER_CONST["MAX_TEMP"])
if self.temperature_limit is None:
if self.mode == "blackbody":
self.temperature_limit = (
int(PLANKIAN_JITTER_CONST["MIN_BLACKBODY_TEMP"]),
max_temp,
)
elif self.mode == "cied":
self.temperature_limit = (
int(PLANKIAN_JITTER_CONST["MIN_CIED_TEMP"]),
max_temp,
)
else:
if self.mode == "blackbody" and (
min(self.temperature_limit) < PLANKIAN_JITTER_CONST["MIN_BLACKBODY_TEMP"]
or max(self.temperature_limit) > max_temp
):
raise ValueError(
"Temperature limits for blackbody should be in [3000, 15000] range",
)
if self.mode == "cied" and (
min(self.temperature_limit) < PLANKIAN_JITTER_CONST["MIN_CIED_TEMP"]
or max(self.temperature_limit) > max_temp
):
raise ValueError(
"Temperature limits for CIED should be in [4000, 15000] range",
)
if not self.temperature_limit[0] <= PLANKIAN_JITTER_CONST["WHITE_TEMP"] <= self.temperature_limit[1]:
raise ValueError(
"White temperature should be within the temperature limits",
)
return self
def __init__(
self,
mode: Literal["blackbody", "cied"] = "blackbody",
temperature_limit: tuple[int, int] | None = None,
sampling_method: Literal["uniform", "gaussian"] = "uniform",
p: float = 0.5,
always_apply: bool | None = None,
) -> None:
super().__init__(p=p, always_apply=always_apply)
self.mode = mode
self.temperature_limit = cast(tuple[int, int], temperature_limit)
self.sampling_method = sampling_method
def apply(self, img: np.ndarray, temperature: int, **params: Any) -> np.ndarray:
non_rgb_error(img)
return fmain.planckian_jitter(img, temperature, mode=self.mode)
def get_params(self) -> dict[str, Any]:
sampling_prob_boundary = PLANKIAN_JITTER_CONST["SAMPLING_TEMP_PROB"]
sampling_temp_boundary = PLANKIAN_JITTER_CONST["WHITE_TEMP"]
if self.sampling_method == "uniform":
# Split into 2 cases to avoid selecting cold temperatures (>6000) too often
if self.py_random.random() < sampling_prob_boundary:
temperature = self.py_random.uniform(
self.temperature_limit[0],
sampling_temp_boundary,
)
else:
temperature = self.py_random.uniform(
sampling_temp_boundary,
self.temperature_limit[1],
)
elif self.sampling_method == "gaussian":
# Sample values from asymmetric gaussian distribution
if self.py_random.random() < sampling_prob_boundary:
# Left side
shift = np.abs(
self.py_random.gauss(
0,
np.abs(sampling_temp_boundary - self.temperature_limit[0]) / 3,
),
)
temperature = sampling_temp_boundary - shift
else:
# Right side
shift = np.abs(
self.py_random.gauss(
0,
np.abs(self.temperature_limit[1] - sampling_temp_boundary) / 3,
),
)
temperature = sampling_temp_boundary + shift
else:
raise ValueError(f"Unknown sampling method: {self.sampling_method}")
# Ensure temperature is within the valid range
temperature = np.clip(
temperature,
self.temperature_limit[0],
self.temperature_limit[1],
)
return {"temperature": int(temperature)}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "mode", "temperature_limit", "sampling_method"
class PlasmaBrightnessContrast
(brightness_range=(-0.3, 0.3), contrast_range=(-0.3, 0.3), plasma_size=256, roughness=3.0, always_apply=None, p=0.5)
[view source on GitHub] ¶
Apply plasma fractal pattern to modify image brightness and contrast.
This transform uses the Diamond-Square algorithm to generate organic-looking fractal patterns that are then used to create spatially-varying brightness and contrast adjustments. The result is a natural-looking, non-uniform modification of the image.
Parameters:
Name | Type | Description |
---|---|---|
brightness_range | float, float | Range for brightness adjustment strength. Values between -1 and 1: - Positive values increase brightness - Negative values decrease brightness - 0 means no brightness change Default: (-0.3, 0.3) |
contrast_range | float, float | Range for contrast adjustment strength. Values between -1 and 1: - Positive values increase contrast - Negative values decrease contrast - 0 means no contrast change Default: (-0.3, 0.3) |
plasma_size | int | Size of the plasma pattern. Will be rounded up to nearest power of 2. Larger values create more detailed patterns. Default: 256 |
roughness | float | Controls the roughness of the plasma pattern. Higher values create more rough/sharp transitions. Must be greater than 0. Typical values are between 1.0 and 5.0. Default: 3.0 p (float): Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: Any
Mathematical Formulation: 1. Plasma Pattern Generation: The Diamond-Square algorithm generates a pattern P(x,y) ∈ [0,1] by: - Starting with random corner values - Recursively computing midpoints using: M = (V1 + V2 + V3 + V4)/4 + R(d) where V1..V4 are corner values and R(d) is random noise that decreases with distance d according to the roughness parameter.
2. Brightness Adjustment:
For each pixel (x,y):
O(x,y) = I(x,y) + b·P(x,y)·max_value
where:
- I is the input image
- b is the brightness factor
- P is the plasma pattern
- max_value is the maximum possible pixel value
3. Contrast Adjustment:
For each pixel (x,y):
O(x,y) = μ + (I(x,y) - μ)·(1 + c·P(x,y))
where:
- μ is the mean pixel value
- c is the contrast factor
- P is the plasma pattern
Note
- The plasma pattern creates smooth, organic variations in the adjustments
- Brightness and contrast modifications are applied sequentially
- Final values are clipped to valid range [0, max_value]
- The same plasma pattern is used for both brightness and contrast to maintain coherent spatial variations
Examples:
Default parameters¶
Custom adjustments with fine pattern¶
>>> transform = A.PlasmaBrightnessContrast(
... brightness_range=(-0.5, 0.5),
... contrast_range=(-0.3, 0.3),
... plasma_size=512, # More detailed pattern
... roughness=2.5, # Smoother transitions
... p=1.0
... )
References
.. [1] Fournier, Fussell, and Carpenter, "Computer rendering of stochastic models," Communications of the ACM, 1982. Paper introducing the Diamond-Square algorithm.
.. [2] Miller, "The Diamond-Square Algorithm: A Detailed Analysis," Journal of Computer Graphics Techniques, 2016. Comprehensive analysis of the algorithm and its properties.
.. [3] Ebert et al., "Texturing & Modeling: A Procedural Approach," Chapter 12: Noise, Hypertexture, Antialiasing, and Gesture. Detailed coverage of procedural noise patterns.
.. [4] Diamond-Square algorithm: https://en.wikipedia.org/wiki/Diamond-square_algorithm
.. [5] Plasma effect: https://lodev.org/cgtutor/plasma.html
See Also: - RandomBrightnessContrast: For uniform brightness/contrast adjustments - CLAHE: For contrast limited adaptive histogram equalization - FancyPCA: For color-based contrast enhancement - HistogramMatching: For reference-based contrast adjustment
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class PlasmaBrightnessContrast(ImageOnlyTransform):
"""Apply plasma fractal pattern to modify image brightness and contrast.
This transform uses the Diamond-Square algorithm to generate organic-looking fractal patterns
that are then used to create spatially-varying brightness and contrast adjustments.
The result is a natural-looking, non-uniform modification of the image.
Args:
brightness_range ((float, float)): Range for brightness adjustment strength.
Values between -1 and 1:
- Positive values increase brightness
- Negative values decrease brightness
- 0 means no brightness change
Default: (-0.3, 0.3)
contrast_range ((float, float)): Range for contrast adjustment strength.
Values between -1 and 1:
- Positive values increase contrast
- Negative values decrease contrast
- 0 means no contrast change
Default: (-0.3, 0.3)
plasma_size (int): Size of the plasma pattern. Will be rounded up to nearest power of 2.
Larger values create more detailed patterns. Default: 256
roughness (float): Controls the roughness of the plasma pattern.
Higher values create more rough/sharp transitions.
Must be greater than 0.
Typical values are between 1.0 and 5.0. Default: 3.0
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
Any
Mathematical Formulation:
1. Plasma Pattern Generation:
The Diamond-Square algorithm generates a pattern P(x,y) ∈ [0,1] by:
- Starting with random corner values
- Recursively computing midpoints using:
M = (V1 + V2 + V3 + V4)/4 + R(d)
where V1..V4 are corner values and R(d) is random noise that
decreases with distance d according to the roughness parameter.
2. Brightness Adjustment:
For each pixel (x,y):
O(x,y) = I(x,y) + b·P(x,y)·max_value
where:
- I is the input image
- b is the brightness factor
- P is the plasma pattern
- max_value is the maximum possible pixel value
3. Contrast Adjustment:
For each pixel (x,y):
O(x,y) = μ + (I(x,y) - μ)·(1 + c·P(x,y))
where:
- μ is the mean pixel value
- c is the contrast factor
- P is the plasma pattern
Note:
- The plasma pattern creates smooth, organic variations in the adjustments
- Brightness and contrast modifications are applied sequentially
- Final values are clipped to valid range [0, max_value]
- The same plasma pattern is used for both brightness and contrast
to maintain coherent spatial variations
Examples:
>>> import albumentations as A
>>> import numpy as np
# Default parameters
>>> transform = A.PlasmaBrightnessContrast(p=1.0)
# Custom adjustments with fine pattern
>>> transform = A.PlasmaBrightnessContrast(
... brightness_range=(-0.5, 0.5),
... contrast_range=(-0.3, 0.3),
... plasma_size=512, # More detailed pattern
... roughness=2.5, # Smoother transitions
... p=1.0
... )
References:
.. [1] Fournier, Fussell, and Carpenter, "Computer rendering of stochastic models,"
Communications of the ACM, 1982.
Paper introducing the Diamond-Square algorithm.
.. [2] Miller, "The Diamond-Square Algorithm: A Detailed Analysis,"
Journal of Computer Graphics Techniques, 2016.
Comprehensive analysis of the algorithm and its properties.
.. [3] Ebert et al., "Texturing & Modeling: A Procedural Approach,"
Chapter 12: Noise, Hypertexture, Antialiasing, and Gesture.
Detailed coverage of procedural noise patterns.
.. [4] Diamond-Square algorithm:
https://en.wikipedia.org/wiki/Diamond-square_algorithm
.. [5] Plasma effect:
https://lodev.org/cgtutor/plasma.html
See Also:
- RandomBrightnessContrast: For uniform brightness/contrast adjustments
- CLAHE: For contrast limited adaptive histogram equalization
- FancyPCA: For color-based contrast enhancement
- HistogramMatching: For reference-based contrast adjustment
"""
class InitSchema(BaseTransformInitSchema):
brightness_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(-1, 1)),
]
contrast_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(-1, 1)),
]
plasma_size: int = Field(default=256, gt=0)
roughness: float = Field(default=3.0, gt=0)
def __init__(
self,
brightness_range: tuple[float, float] = (-0.3, 0.3),
contrast_range: tuple[float, float] = (-0.3, 0.3),
plasma_size: int = 256,
roughness: float = 3.0,
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.brightness_range = brightness_range
self.contrast_range = contrast_range
self.plasma_size = plasma_size
self.roughness = roughness
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
image = data["image"] if "image" in data else data["images"][0]
# Sample adjustment strengths
brightness = self.py_random.uniform(*self.brightness_range)
contrast = self.py_random.uniform(*self.contrast_range)
# Generate plasma pattern
plasma = fmain.generate_plasma_pattern(
target_shape=image.shape[:2],
size=self.plasma_size,
roughness=self.roughness,
random_generator=self.random_generator,
)
return {
"brightness_factor": brightness,
"contrast_factor": contrast,
"plasma_pattern": plasma,
}
def apply(
self,
img: np.ndarray,
brightness_factor: float,
contrast_factor: float,
plasma_pattern: np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.apply_plasma_brightness_contrast(
img,
brightness_factor,
contrast_factor,
plasma_pattern,
)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "brightness_range", "contrast_range", "plasma_size", "roughness"
class PlasmaShadow
(shadow_intensity_range=(0.3, 0.7), plasma_size=256, roughness=3.0, p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply plasma-based shadow effect to the image.
Creates organic-looking shadows using plasma fractal noise pattern. The shadow intensity varies smoothly across the image, creating natural-looking darkening effects that can simulate shadows, shading, or lighting variations.
Parameters:
Name | Type | Description |
---|---|---|
shadow_intensity_range | tuple[float, float] | Range for shadow intensity. Values between 0 and 1: - 0 means no shadow (original image) - 1 means maximum darkening (black) - Values between create partial shadows Default: (0.3, 0.7) |
plasma_size | int | Size of the plasma pattern. Will be rounded up to nearest power of 2. Larger values create more detailed shadow patterns: - Small values (~64): Large, smooth shadow regions - Medium values (~256): Balanced detail level - Large values (~512+): Fine shadow details Default: 256 |
roughness | float | Controls the roughness of the plasma pattern. Higher values create more rough/sharp shadow transitions. Must be greater than 0: - Low values (~1.0): Very smooth transitions - Medium values (~3.0): Natural-looking shadows - High values (~5.0): More dramatic, sharp shadows Default: 3.0 |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Note
- The transform darkens the image using a plasma pattern
- Works with any number of channels (grayscale, RGB, multispectral)
- Shadow pattern is generated using Diamond-Square algorithm
- The same shadow pattern is applied to all channels
- Final values are clipped to valid range [0, max_value]
Mathematical Formulation: 1. Plasma Pattern Generation: The Diamond-Square algorithm generates a pattern P(x,y) ∈ [0,1] with fractal characteristics controlled by roughness parameter.
2. Shadow Application:
For each pixel (x,y):
O(x,y) = I(x,y) * (1 - i·P(x,y))
where:
- I is the input image
- P is the plasma pattern
- i is the shadow intensity
- O is the output image
Examples:
Default parameters for natural shadows¶
Subtle, smooth shadows¶
>>> transform = A.PlasmaShadow(
... shadow_intensity=(0.1, 0.3),
... plasma_size=128,
... roughness=1.5,
... p=1.0
... )
Dramatic, detailed shadows¶
>>> transform = A.PlasmaShadow(
... shadow_intensity=(0.5, 0.9),
... plasma_size=512,
... roughness=4.0,
... p=1.0
... )
References
.. [1] Fournier, Fussell, and Carpenter, "Computer rendering of stochastic models," Communications of the ACM, 1982. Paper introducing the Diamond-Square algorithm.
.. [2] Diamond-Square algorithm: https://en.wikipedia.org/wiki/Diamond-square_algorithm
See Also: - PlasmaBrightnessContrast: For brightness/contrast adjustments using plasma patterns - RandomShadow: For geometric shadow effects - RandomToneCurve: For global lighting adjustments
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class PlasmaShadow(ImageOnlyTransform):
"""Apply plasma-based shadow effect to the image.
Creates organic-looking shadows using plasma fractal noise pattern.
The shadow intensity varies smoothly across the image, creating natural-looking
darkening effects that can simulate shadows, shading, or lighting variations.
Args:
shadow_intensity_range (tuple[float, float]): Range for shadow intensity.
Values between 0 and 1:
- 0 means no shadow (original image)
- 1 means maximum darkening (black)
- Values between create partial shadows
Default: (0.3, 0.7)
plasma_size (int): Size of the plasma pattern. Will be rounded up to nearest power of 2.
Larger values create more detailed shadow patterns:
- Small values (~64): Large, smooth shadow regions
- Medium values (~256): Balanced detail level
- Large values (~512+): Fine shadow details
Default: 256
roughness (float): Controls the roughness of the plasma pattern.
Higher values create more rough/sharp shadow transitions.
Must be greater than 0:
- Low values (~1.0): Very smooth transitions
- Medium values (~3.0): Natural-looking shadows
- High values (~5.0): More dramatic, sharp shadows
Default: 3.0
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Note:
- The transform darkens the image using a plasma pattern
- Works with any number of channels (grayscale, RGB, multispectral)
- Shadow pattern is generated using Diamond-Square algorithm
- The same shadow pattern is applied to all channels
- Final values are clipped to valid range [0, max_value]
Mathematical Formulation:
1. Plasma Pattern Generation:
The Diamond-Square algorithm generates a pattern P(x,y) ∈ [0,1]
with fractal characteristics controlled by roughness parameter.
2. Shadow Application:
For each pixel (x,y):
O(x,y) = I(x,y) * (1 - i·P(x,y))
where:
- I is the input image
- P is the plasma pattern
- i is the shadow intensity
- O is the output image
Examples:
>>> import albumentations as A
>>> import numpy as np
# Default parameters for natural shadows
>>> transform = A.PlasmaShadow(p=1.0)
# Subtle, smooth shadows
>>> transform = A.PlasmaShadow(
... shadow_intensity=(0.1, 0.3),
... plasma_size=128,
... roughness=1.5,
... p=1.0
... )
# Dramatic, detailed shadows
>>> transform = A.PlasmaShadow(
... shadow_intensity=(0.5, 0.9),
... plasma_size=512,
... roughness=4.0,
... p=1.0
... )
References:
.. [1] Fournier, Fussell, and Carpenter, "Computer rendering of stochastic models,"
Communications of the ACM, 1982.
Paper introducing the Diamond-Square algorithm.
.. [2] Diamond-Square algorithm:
https://en.wikipedia.org/wiki/Diamond-square_algorithm
See Also:
- PlasmaBrightnessContrast: For brightness/contrast adjustments using plasma patterns
- RandomShadow: For geometric shadow effects
- RandomToneCurve: For global lighting adjustments
"""
class InitSchema(BaseTransformInitSchema):
shadow_intensity_range: Annotated[tuple[float, float], AfterValidator(check_range_bounds(0, 1))]
plasma_size: int = Field(default=256, gt=0)
roughness: float = Field(default=3.0, gt=0)
def __init__(
self,
shadow_intensity_range: tuple[float, float] = (0.3, 0.7),
plasma_size: int = 256,
roughness: float = 3.0,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.shadow_intensity_range = shadow_intensity_range
self.plasma_size = plasma_size
self.roughness = roughness
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
image = data["image"] if "image" in data else data["images"][0]
# Sample shadow intensity
intensity = self.py_random.uniform(*self.shadow_intensity_range)
# Generate plasma pattern
plasma = fmain.generate_plasma_pattern(
target_shape=image.shape[:2],
size=self.plasma_size,
roughness=self.roughness,
random_generator=self.random_generator,
)
return {
"intensity": intensity,
"plasma_pattern": plasma,
}
def apply(
self,
img: np.ndarray,
intensity: float,
plasma_pattern: np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.apply_plasma_shadow(img, intensity, plasma_pattern)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "shadow_intensity_range", "plasma_size", "roughness"
class Posterize
(num_bits=4, p=0.5, always_apply=None)
[view source on GitHub] ¶
Reduces the number of bits for each color channel in the image.
This transform applies color posterization, a technique that reduces the number of distinct colors used in an image. It works by lowering the number of bits used to represent each color channel, effectively creating a "poster-like" effect with fewer color gradations.
Parameters:
Name | Type | Description |
---|---|---|
num_bits | int | tuple[int, int] | list[int] | list[tuple[int, int]] | Defines the number of bits to keep for each color channel. Can be specified in several ways: - Single int: Same number of bits for all channels. Range: [1, 7]. - tuple of two ints: (min_bits, max_bits) to randomly choose from. Range for each: [1, 7]. - list of three ints: Specific number of bits for each channel [r_bits, g_bits, b_bits]. - list of three tuples: Ranges for each channel [(r_min, r_max), (g_min, g_max), (b_min, b_max)]. Default: 4 |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: Any
Note
- The effect becomes more pronounced as the number of bits is reduced.
- This transform can create interesting artistic effects or be used for image compression simulation.
- Posterization is particularly useful for:
- Creating stylized or retro-looking images
- Reducing the color palette for specific artistic effects
- Simulating the look of older or lower-quality digital images
- Data augmentation in scenarios where color depth might vary
Mathematical Background: For an 8-bit color channel, posterization to n bits can be expressed as: new_value = (old_value >> (8 - n)) << (8 - n) This operation keeps the n most significant bits and sets the rest to zero.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Posterize all channels to 3 bits¶
>>> transform = A.Posterize(num_bits=3, p=1.0)
>>> posterized_image = transform(image=image)["image"]
Randomly posterize between 2 and 5 bits¶
>>> transform = A.Posterize(num_bits=(2, 5), p=1.0)
>>> posterized_image = transform(image=image)["image"]
Different bits for each channel¶
>>> transform = A.Posterize(num_bits=[3, 5, 2], p=1.0)
>>> posterized_image = transform(image=image)["image"]
Range of bits for each channel¶
>>> transform = A.Posterize(num_bits=[(1, 3), (3, 5), (2, 4)], p=1.0)
>>> posterized_image = transform(image=image)["image"]
References
- Color Quantization: https://en.wikipedia.org/wiki/Color_quantization
- Posterization: https://en.wikipedia.org/wiki/Posterization
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Posterize(ImageOnlyTransform):
"""Reduces the number of bits for each color channel in the image.
This transform applies color posterization, a technique that reduces the number of distinct
colors used in an image. It works by lowering the number of bits used to represent each
color channel, effectively creating a "poster-like" effect with fewer color gradations.
Args:
num_bits (int | tuple[int, int] | list[int] | list[tuple[int, int]]):
Defines the number of bits to keep for each color channel. Can be specified in several ways:
- Single int: Same number of bits for all channels. Range: [1, 7].
- tuple of two ints: (min_bits, max_bits) to randomly choose from. Range for each: [1, 7].
- list of three ints: Specific number of bits for each channel [r_bits, g_bits, b_bits].
- list of three tuples: Ranges for each channel [(r_min, r_max), (g_min, g_max), (b_min, b_max)].
Default: 4
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
Any
Note:
- The effect becomes more pronounced as the number of bits is reduced.
- This transform can create interesting artistic effects or be used for image compression simulation.
- Posterization is particularly useful for:
* Creating stylized or retro-looking images
* Reducing the color palette for specific artistic effects
* Simulating the look of older or lower-quality digital images
* Data augmentation in scenarios where color depth might vary
Mathematical Background:
For an 8-bit color channel, posterization to n bits can be expressed as:
new_value = (old_value >> (8 - n)) << (8 - n)
This operation keeps the n most significant bits and sets the rest to zero.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Posterize all channels to 3 bits
>>> transform = A.Posterize(num_bits=3, p=1.0)
>>> posterized_image = transform(image=image)["image"]
# Randomly posterize between 2 and 5 bits
>>> transform = A.Posterize(num_bits=(2, 5), p=1.0)
>>> posterized_image = transform(image=image)["image"]
# Different bits for each channel
>>> transform = A.Posterize(num_bits=[3, 5, 2], p=1.0)
>>> posterized_image = transform(image=image)["image"]
# Range of bits for each channel
>>> transform = A.Posterize(num_bits=[(1, 3), (3, 5), (2, 4)], p=1.0)
>>> posterized_image = transform(image=image)["image"]
References:
- Color Quantization: https://en.wikipedia.org/wiki/Color_quantization
- Posterization: https://en.wikipedia.org/wiki/Posterization
"""
class InitSchema(BaseTransformInitSchema):
num_bits: int | tuple[int, int] | list[tuple[int, int]]
@field_validator("num_bits")
@classmethod
def validate_num_bits(
cls,
num_bits: Any,
) -> tuple[int, int] | list[tuple[int, int]]:
if isinstance(num_bits, int):
if num_bits < 1 or num_bits > SEVEN:
raise ValueError("num_bits must be in the range [1, 7]")
return (num_bits, num_bits)
if isinstance(num_bits, Sequence) and len(num_bits) > PAIR:
return [to_tuple(i, i) for i in num_bits]
return cast(tuple[int, int], to_tuple(num_bits, num_bits))
def __init__(
self,
num_bits: int | tuple[int, int] | list[tuple[int, int]] = 4,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.num_bits = cast(Union[tuple[int, int], list[tuple[int, int]]], num_bits)
def apply(
self,
img: np.ndarray,
num_bits: Literal[1, 2, 3, 4, 5, 6, 7] | list[Literal[1, 2, 3, 4, 5, 6, 7]],
**params: Any,
) -> np.ndarray:
return fmain.posterize(img, num_bits)
def get_params(self) -> dict[str, Any]:
if isinstance(self.num_bits, list):
num_bits = [self.py_random.randint(*i) for i in self.num_bits]
return {"num_bits": num_bits}
return {"num_bits": self.py_random.randint(*self.num_bits)}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return ("num_bits",)
class RGBShift
(r_shift_limit=(-20, 20), g_shift_limit=(-20, 20), b_shift_limit=(-20, 20), p=0.5, always_apply=None)
[view source on GitHub] ¶
Randomly shift values for each channel of the input RGB image.
A specialized version of AdditiveNoise that applies constant uniform shifts to RGB channels. Each channel (R,G,B) can have its own shift range specified.
Parameters:
Name | Type | Description |
---|---|---|
r_shift_limit | int, int) or int | Range for shifting the red channel. Options: - If tuple (min, max): Sample shift value from this range - If int: Sample shift value from (-r_shift_limit, r_shift_limit) - For uint8 images: Values represent absolute shifts in [0, 255] - For float images: Values represent relative shifts in [0, 1] Default: (-20, 20) |
g_shift_limit | int, int) or int | Range for shifting the green channel. Options: - If tuple (min, max): Sample shift value from this range - If int: Sample shift value from (-g_shift_limit, g_shift_limit) - For uint8 images: Values represent absolute shifts in [0, 255] - For float images: Values represent relative shifts in [0, 1] Default: (-20, 20) |
b_shift_limit | int, int) or int | Range for shifting the blue channel. Options: - If tuple (min, max): Sample shift value from this range - If int: Sample shift value from (-b_shift_limit, b_shift_limit) - For uint8 images: Values represent absolute shifts in [0, 255] - For float images: Values represent relative shifts in [0, 1] Default: (-20, 20) |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Note
- Values are shifted independently for each channel
- For uint8 images:
- Input ranges like (-20, 20) represent pixel value shifts
- A shift of 20 means adding 20 to that channel
- Final values are clipped to [0, 255]
- For float32 images:
- Input ranges like (-0.1, 0.1) represent relative shifts
- A shift of 0.1 means adding 0.1 to that channel
- Final values are clipped to [0, 1]
Examples:
Shift RGB channels of uint8 image¶
>>> transform = A.RGBShift(
... r_shift_limit=30, # Will sample red shift from [-30, 30]
... g_shift_limit=(-20, 20), # Will sample green shift from [-20, 20]
... b_shift_limit=(-10, 10), # Will sample blue shift from [-10, 10]
... p=1.0
... )
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> shifted = transform(image=image)["image"]
Same effect using AdditiveNoise¶
>>> transform = A.AdditiveNoise(
... noise_type="uniform",
... spatial_mode="constant", # One value per channel
... noise_params={
... "ranges": [(-30/255, 30/255), (-20/255, 20/255), (-10/255, 10/255)]
... },
... p=1.0
... )
See Also: - AdditiveNoise: More general noise transform with various options: * Different noise distributions (uniform, gaussian, laplace, beta) * Spatial modes (constant, per-pixel, shared) * Approximation for faster computation - RandomToneCurve: For non-linear color transformations - RandomBrightnessContrast: For combined brightness and contrast adjustments - PlankianJitter: For color temperature adjustments - HueSaturationValue: For HSV color space adjustments - ColorJitter: For combined brightness, contrast, saturation adjustments
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RGBShift(AdditiveNoise):
"""Randomly shift values for each channel of the input RGB image.
A specialized version of AdditiveNoise that applies constant uniform shifts to RGB channels.
Each channel (R,G,B) can have its own shift range specified.
Args:
r_shift_limit ((int, int) or int): Range for shifting the red channel. Options:
- If tuple (min, max): Sample shift value from this range
- If int: Sample shift value from (-r_shift_limit, r_shift_limit)
- For uint8 images: Values represent absolute shifts in [0, 255]
- For float images: Values represent relative shifts in [0, 1]
Default: (-20, 20)
g_shift_limit ((int, int) or int): Range for shifting the green channel. Options:
- If tuple (min, max): Sample shift value from this range
- If int: Sample shift value from (-g_shift_limit, g_shift_limit)
- For uint8 images: Values represent absolute shifts in [0, 255]
- For float images: Values represent relative shifts in [0, 1]
Default: (-20, 20)
b_shift_limit ((int, int) or int): Range for shifting the blue channel. Options:
- If tuple (min, max): Sample shift value from this range
- If int: Sample shift value from (-b_shift_limit, b_shift_limit)
- For uint8 images: Values represent absolute shifts in [0, 255]
- For float images: Values represent relative shifts in [0, 1]
Default: (-20, 20)
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Note:
- Values are shifted independently for each channel
- For uint8 images:
* Input ranges like (-20, 20) represent pixel value shifts
* A shift of 20 means adding 20 to that channel
* Final values are clipped to [0, 255]
- For float32 images:
* Input ranges like (-0.1, 0.1) represent relative shifts
* A shift of 0.1 means adding 0.1 to that channel
* Final values are clipped to [0, 1]
Examples:
>>> import numpy as np
>>> import albumentations as A
# Shift RGB channels of uint8 image
>>> transform = A.RGBShift(
... r_shift_limit=30, # Will sample red shift from [-30, 30]
... g_shift_limit=(-20, 20), # Will sample green shift from [-20, 20]
... b_shift_limit=(-10, 10), # Will sample blue shift from [-10, 10]
... p=1.0
... )
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> shifted = transform(image=image)["image"]
# Same effect using AdditiveNoise
>>> transform = A.AdditiveNoise(
... noise_type="uniform",
... spatial_mode="constant", # One value per channel
... noise_params={
... "ranges": [(-30/255, 30/255), (-20/255, 20/255), (-10/255, 10/255)]
... },
... p=1.0
... )
See Also:
- AdditiveNoise: More general noise transform with various options:
* Different noise distributions (uniform, gaussian, laplace, beta)
* Spatial modes (constant, per-pixel, shared)
* Approximation for faster computation
- RandomToneCurve: For non-linear color transformations
- RandomBrightnessContrast: For combined brightness and contrast adjustments
- PlankianJitter: For color temperature adjustments
- HueSaturationValue: For HSV color space adjustments
- ColorJitter: For combined brightness, contrast, saturation adjustments
"""
class InitSchema(BaseTransformInitSchema):
r_shift_limit: SymmetricRangeType
g_shift_limit: SymmetricRangeType
b_shift_limit: SymmetricRangeType
def __init__(
self,
r_shift_limit: ScaleFloatType = (-20, 20),
g_shift_limit: ScaleFloatType = (-20, 20),
b_shift_limit: ScaleFloatType = (-20, 20),
p: float = 0.5,
always_apply: bool | None = None,
):
# Convert RGB shift limits to normalized ranges if needed
def normalize_range(limit: tuple[float, float]) -> tuple[float, float]:
# If any value is > 1, assume uint8 range and normalize
if abs(limit[0]) > 1 or abs(limit[1]) > 1:
return (limit[0] / 255.0, limit[1] / 255.0)
return limit
ranges = [
normalize_range(cast(tuple[float, float], r_shift_limit)),
normalize_range(cast(tuple[float, float], g_shift_limit)),
normalize_range(cast(tuple[float, float], b_shift_limit)),
]
# Initialize with fixed noise type and spatial mode
super().__init__(
noise_type="uniform",
spatial_mode="constant",
noise_params={"ranges": ranges},
approximation=1.0,
p=p,
)
# Store original limits for get_transform_init_args
self.r_shift_limit = cast(tuple[float, float], r_shift_limit)
self.g_shift_limit = cast(tuple[float, float], g_shift_limit)
self.b_shift_limit = cast(tuple[float, float], b_shift_limit)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "r_shift_limit", "g_shift_limit", "b_shift_limit"
class RandomBrightnessContrast
(brightness_limit=(-0.2, 0.2), contrast_limit=(-0.2, 0.2), brightness_by_max=True, ensure_safe_range=False, always_apply=None, p=0.5)
[view source on GitHub] ¶
Randomly changes the brightness and contrast of the input image.
This transform adjusts the brightness and contrast of an image simultaneously, allowing for a wide range of lighting and contrast variations. It's particularly useful for data augmentation in computer vision tasks, helping models become more robust to different lighting conditions.
Parameters:
Name | Type | Description |
---|---|---|
brightness_limit | float | tuple[float, float] | Factor range for changing brightness. If a single float value is provided, the range will be (-brightness_limit, brightness_limit). Values should typically be in the range [-1.0, 1.0], where 0 means no change, 1.0 means maximum brightness, and -1.0 means minimum brightness. Default: (-0.2, 0.2). |
contrast_limit | float | tuple[float, float] | Factor range for changing contrast. If a single float value is provided, the range will be (-contrast_limit, contrast_limit). Values should typically be in the range [-1.0, 1.0], where 0 means no change, 1.0 means maximum increase in contrast, and -1.0 means maximum decrease in contrast. Default: (-0.2, 0.2). |
brightness_by_max | bool | If True, adjusts brightness by scaling pixel values up to the maximum value of the image's dtype. If False, uses the mean pixel value for adjustment. Default: True. |
ensure_safe_range | bool | If True, adjusts alpha and beta to prevent overflow/underflow. This ensures output values stay within the valid range for the image dtype without clipping. Default: False. |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Number of channels: Any
Note
- The order of operation is: contrast adjustment, then brightness adjustment.
- For uint8 images, the output is clipped to [0, 255] range.
- For float32 images, the output is clipped to [0, 1] range.
- The
brightness_by_max
parameter affects how brightness is adjusted: - If True, brightness adjustment is more pronounced and can lead to more saturated results.
- If False, brightness adjustment is more subtle and preserves the overall lighting better.
- This transform is useful for:
- Simulating different lighting conditions
- Enhancing low-light or overexposed images
- Data augmentation to improve model robustness
Mathematical Formulation: Let a be the contrast adjustment factor and β be the brightness adjustment factor. For each pixel value x: 1. Contrast adjustment: x' = clip((x - mean) * (1 + a) + mean) 2. Brightness adjustment: If brightness_by_max is True: x'' = clip(x' * (1 + β)) If brightness_by_max is False: x'' = clip(x' + β * max_value) Where clip() ensures values stay within the valid range for the image dtype.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Default usage¶
>>> transform = A.RandomBrightnessContrast(p=1.0)
>>> augmented_image = transform(image=image)["image"]
Custom brightness and contrast limits¶
>>> transform = A.RandomBrightnessContrast(
... brightness_limit=0.3,
... contrast_limit=0.3,
... p=1.0
... )
>>> augmented_image = transform(image=image)["image"]
Adjust brightness based on mean value¶
>>> transform = A.RandomBrightnessContrast(
... brightness_limit=0.2,
... contrast_limit=0.2,
... brightness_by_max=False,
... p=1.0
... )
>>> augmented_image = transform(image=image)["image"]
References
- Brightness: https://en.wikipedia.org/wiki/Brightness
- Contrast: https://en.wikipedia.org/wiki/Contrast_(vision)
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomBrightnessContrast(ImageOnlyTransform):
"""Randomly changes the brightness and contrast of the input image.
This transform adjusts the brightness and contrast of an image simultaneously, allowing for
a wide range of lighting and contrast variations. It's particularly useful for data augmentation
in computer vision tasks, helping models become more robust to different lighting conditions.
Args:
brightness_limit (float | tuple[float, float]): Factor range for changing brightness.
If a single float value is provided, the range will be (-brightness_limit, brightness_limit).
Values should typically be in the range [-1.0, 1.0], where 0 means no change,
1.0 means maximum brightness, and -1.0 means minimum brightness.
Default: (-0.2, 0.2).
contrast_limit (float | tuple[float, float]): Factor range for changing contrast.
If a single float value is provided, the range will be (-contrast_limit, contrast_limit).
Values should typically be in the range [-1.0, 1.0], where 0 means no change,
1.0 means maximum increase in contrast, and -1.0 means maximum decrease in contrast.
Default: (-0.2, 0.2).
brightness_by_max (bool): If True, adjusts brightness by scaling pixel values up to the
maximum value of the image's dtype. If False, uses the mean pixel value for adjustment.
Default: True.
ensure_safe_range (bool): If True, adjusts alpha and beta to prevent overflow/underflow.
This ensures output values stay within the valid range for the image dtype without clipping.
Default: False.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
Any
Note:
- The order of operation is: contrast adjustment, then brightness adjustment.
- For uint8 images, the output is clipped to [0, 255] range.
- For float32 images, the output is clipped to [0, 1] range.
- The `brightness_by_max` parameter affects how brightness is adjusted:
* If True, brightness adjustment is more pronounced and can lead to more saturated results.
* If False, brightness adjustment is more subtle and preserves the overall lighting better.
- This transform is useful for:
* Simulating different lighting conditions
* Enhancing low-light or overexposed images
* Data augmentation to improve model robustness
Mathematical Formulation:
Let a be the contrast adjustment factor and β be the brightness adjustment factor.
For each pixel value x:
1. Contrast adjustment: x' = clip((x - mean) * (1 + a) + mean)
2. Brightness adjustment:
If brightness_by_max is True: x'' = clip(x' * (1 + β))
If brightness_by_max is False: x'' = clip(x' + β * max_value)
Where clip() ensures values stay within the valid range for the image dtype.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Default usage
>>> transform = A.RandomBrightnessContrast(p=1.0)
>>> augmented_image = transform(image=image)["image"]
# Custom brightness and contrast limits
>>> transform = A.RandomBrightnessContrast(
... brightness_limit=0.3,
... contrast_limit=0.3,
... p=1.0
... )
>>> augmented_image = transform(image=image)["image"]
# Adjust brightness based on mean value
>>> transform = A.RandomBrightnessContrast(
... brightness_limit=0.2,
... contrast_limit=0.2,
... brightness_by_max=False,
... p=1.0
... )
>>> augmented_image = transform(image=image)["image"]
References:
- Brightness: https://en.wikipedia.org/wiki/Brightness
- Contrast: https://en.wikipedia.org/wiki/Contrast_(vision)
"""
class InitSchema(BaseTransformInitSchema):
brightness_limit: SymmetricRangeType
contrast_limit: SymmetricRangeType
brightness_by_max: bool
ensure_safe_range: bool
def __init__(
self,
brightness_limit: ScaleFloatType = (-0.2, 0.2),
contrast_limit: ScaleFloatType = (-0.2, 0.2),
brightness_by_max: bool = True,
ensure_safe_range: bool = False,
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.brightness_limit = cast(tuple[float, float], brightness_limit)
self.contrast_limit = cast(tuple[float, float], contrast_limit)
self.brightness_by_max = brightness_by_max
self.ensure_safe_range = ensure_safe_range
def apply(
self,
img: np.ndarray,
alpha: float,
beta: float,
**params: Any,
) -> np.ndarray:
return albucore.multiply_add(img, alpha, beta, inplace=False)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, float]:
image = data["image"] if "image" in data else data["images"][0]
# Sample initial values
alpha = 1.0 + self.py_random.uniform(*self.contrast_limit)
beta = self.py_random.uniform(*self.brightness_limit)
max_value = MAX_VALUES_BY_DTYPE[image.dtype]
# Scale beta according to brightness_by_max setting
beta = beta * max_value if self.brightness_by_max else beta * np.mean(image)
# Clip values to safe ranges if needed
if self.ensure_safe_range:
alpha, beta = fmain.get_safe_brightness_contrast_params(
alpha,
beta,
max_value,
)
return {
"alpha": alpha,
"beta": beta,
}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return (
"brightness_limit",
"contrast_limit",
"brightness_by_max",
"ensure_safe_range",
)
class RandomFog
(fog_coef_lower=None, fog_coef_upper=None, alpha_coef=0.08, fog_coef_range=(0.3, 1), always_apply=None, p=0.5)
[view source on GitHub] ¶
Simulates fog for the image by adding random fog-like artifacts.
This transform creates a fog effect by generating semi-transparent overlays that mimic the visual characteristics of fog. The fog intensity and distribution can be controlled to create various fog-like conditions.
Parameters:
Name | Type | Description |
---|---|---|
fog_coef_range | tuple[float, float] | Range for fog intensity coefficient. Should be in [0, 1] range. |
alpha_coef | float | Transparency of the fog circles. Should be in [0, 1] range. Default: 0.08. |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: 3
Note
- The fog effect is created by overlaying semi-transparent circles on the image.
- Higher fog coefficient values result in denser fog effects.
- The fog is typically denser in the center of the image and gradually decreases towards the edges.
- This transform is useful for:
- Simulating various weather conditions in outdoor scenes
- Data augmentation for improving model robustness to foggy conditions
- Creating atmospheric effects in image editing
Mathematical Formulation: For each fog particle: 1. A position (x, y) is randomly generated within the image. 2. A circle with random radius is drawn at this position. 3. The circle's alpha (transparency) is determined by the alpha_coef. 4. These circles are overlaid on the original image to create the fog effect.
The final pixel value is calculated as:
output = (1 - alpha) * original_pixel + alpha * fog_color
where alpha is influenced by the fog_coef and alpha_coef parameters.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Default usage¶
Custom fog intensity range¶
>>> transform = A.RandomFog(fog_coef_lower=0.3, fog_coef_upper=0.8, p=1.0)
>>> foggy_image = transform(image=image)["image"]
Adjust fog transparency¶
>>> transform = A.RandomFog(fog_coef_lower=0.2, fog_coef_upper=0.5, alpha_coef=0.1, p=1.0)
>>> foggy_image = transform(image=image)["image"]
References
- Fog: https://en.wikipedia.org/wiki/Fog
- Atmospheric perspective: https://en.wikipedia.org/wiki/Aerial_perspective
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomFog(ImageOnlyTransform):
"""Simulates fog for the image by adding random fog-like artifacts.
This transform creates a fog effect by generating semi-transparent overlays
that mimic the visual characteristics of fog. The fog intensity and distribution
can be controlled to create various fog-like conditions.
Args:
fog_coef_range (tuple[float, float]): Range for fog intensity coefficient. Should be in [0, 1] range.
alpha_coef (float): Transparency of the fog circles. Should be in [0, 1] range. Default: 0.08.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
3
Note:
- The fog effect is created by overlaying semi-transparent circles on the image.
- Higher fog coefficient values result in denser fog effects.
- The fog is typically denser in the center of the image and gradually decreases towards the edges.
- This transform is useful for:
* Simulating various weather conditions in outdoor scenes
* Data augmentation for improving model robustness to foggy conditions
* Creating atmospheric effects in image editing
Mathematical Formulation:
For each fog particle:
1. A position (x, y) is randomly generated within the image.
2. A circle with random radius is drawn at this position.
3. The circle's alpha (transparency) is determined by the alpha_coef.
4. These circles are overlaid on the original image to create the fog effect.
The final pixel value is calculated as:
output = (1 - alpha) * original_pixel + alpha * fog_color
where alpha is influenced by the fog_coef and alpha_coef parameters.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Default usage
>>> transform = A.RandomFog(p=1.0)
>>> foggy_image = transform(image=image)["image"]
# Custom fog intensity range
>>> transform = A.RandomFog(fog_coef_lower=0.3, fog_coef_upper=0.8, p=1.0)
>>> foggy_image = transform(image=image)["image"]
# Adjust fog transparency
>>> transform = A.RandomFog(fog_coef_lower=0.2, fog_coef_upper=0.5, alpha_coef=0.1, p=1.0)
>>> foggy_image = transform(image=image)["image"]
References:
- Fog: https://en.wikipedia.org/wiki/Fog
- Atmospheric perspective: https://en.wikipedia.org/wiki/Aerial_perspective
"""
class InitSchema(BaseTransformInitSchema):
fog_coef_lower: float | None = Field(
ge=0,
le=1,
)
fog_coef_upper: float | None = Field(
ge=0,
le=1,
)
fog_coef_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
AfterValidator(nondecreasing),
]
alpha_coef: float = Field(ge=0, le=1)
@model_validator(mode="after")
def validate_fog_coefficients(self) -> Self:
if self.fog_coef_lower is not None:
warn(
"`fog_coef_lower` is deprecated, use `fog_coef_range` instead.",
DeprecationWarning,
stacklevel=2,
)
if self.fog_coef_upper is not None:
warn(
"`fog_coef_upper` is deprecated, use `fog_coef_range` instead.",
DeprecationWarning,
stacklevel=2,
)
lower = self.fog_coef_lower if self.fog_coef_lower is not None else self.fog_coef_range[0]
upper = self.fog_coef_upper if self.fog_coef_upper is not None else self.fog_coef_range[1]
self.fog_coef_range = (lower, upper)
self.fog_coef_lower = None
self.fog_coef_upper = None
return self
def __init__(
self,
fog_coef_lower: float | None = None,
fog_coef_upper: float | None = None,
alpha_coef: float = 0.08,
fog_coef_range: tuple[float, float] = (0.3, 1),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.fog_coef_range = fog_coef_range
self.alpha_coef = alpha_coef
def apply(
self,
img: np.ndarray,
particle_positions: list[tuple[int, int]],
radiuses: list[int],
intensity: float,
**params: Any,
) -> np.ndarray:
non_rgb_error(img)
return fmain.add_fog(
img,
intensity,
self.alpha_coef,
particle_positions,
radiuses,
)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
# Select a random fog intensity within the specified range
intensity = self.py_random.uniform(*self.fog_coef_range)
image_shape = params["shape"][:2]
image_height, image_width = image_shape
# Calculate the size of the fog effect region based on image width and fog intensity
fog_region_size = max(1, int(image_width // 3 * intensity))
particle_positions = []
# Initialize the central region where fog will be most dense
center_x, center_y = (int(x) for x in fgeometric.center(image_shape))
# Define the initial size of the foggy area
current_width = image_width
current_height = image_height
# Define shrink factor for reducing the foggy area each iteration
shrink_factor = 0.1
max_iterations = 10 # Prevent infinite loop
iteration = 0
while current_width > fog_region_size and current_height > fog_region_size and iteration < max_iterations:
# Calculate the number of particles for this region
area = current_width * current_height
particles_in_region = int(
area / (fog_region_size * fog_region_size) * intensity * 10,
)
for _ in range(particles_in_region):
# Generate random positions within the current region
x = self.py_random.randint(
center_x - current_width // 2,
center_x + current_width // 2,
)
y = self.py_random.randint(
center_y - current_height // 2,
center_y + current_height // 2,
)
particle_positions.append((x, y))
# Shrink the region for the next iteration
current_width = int(current_width * (1 - shrink_factor))
current_height = int(current_height * (1 - shrink_factor))
iteration += 1
radiuses = fmain.get_fog_particle_radiuses(
image_shape,
len(particle_positions),
intensity,
self.random_generator,
)
return {
"particle_positions": particle_positions,
"intensity": intensity,
"radiuses": radiuses,
}
def get_transform_init_args_names(self) -> tuple[str, str]:
return "fog_coef_range", "alpha_coef"
class RandomGamma
(gamma_limit=(80, 120), always_apply=None, p=0.5)
[view source on GitHub] ¶
Applies random gamma correction to the input image.
Gamma correction, or simply gamma, is a nonlinear operation used to encode and decode luminance or tristimulus values in imaging systems. This transform can adjust the brightness of an image while preserving the relative differences between darker and lighter areas, making it useful for simulating different lighting conditions or correcting for display characteristics.
Parameters:
Name | Type | Description |
---|---|---|
gamma_limit | float | tuple[float, float] | If gamma_limit is a single float value, the range will be (1, gamma_limit). If it's a tuple of two floats, they will serve as the lower and upper bounds for gamma adjustment. Values are in terms of percentage change, e.g., (80, 120) means the gamma will be between 80% and 120% of the original. Default: (80, 120). |
eps | A small value added to the gamma to avoid division by zero or log of zero errors. Default: 1e-7. | |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Number of channels: Any
Note
- The gamma correction is applied using the formula: output = input^gamma
- Gamma values > 1 will make the image darker, while values < 1 will make it brighter
- This transform is particularly useful for:
- Simulating different lighting conditions
- Correcting for non-linear display characteristics
- Enhancing contrast in certain regions of the image
- Data augmentation in computer vision tasks
Mathematical Formulation: Let I be the input image and G (gamma) be the correction factor. The gamma correction is applied as follows: 1. Normalize the image to [0, 1] range: I_norm = I / 255 (for uint8 images) 2. Apply gamma correction: I_corrected = I_norm ^ (1 / G) 3. Scale back to original range: output = I_corrected * 255 (for uint8 images)
The actual gamma value used is calculated as:
G = 1 + (random_value / 100), where random_value is sampled from gamma_limit range.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Default usage¶
Custom gamma range¶
>>> transform = A.RandomGamma(gamma_limit=(50, 150), p=1.0)
>>> augmented_image = transform(image=image)["image"]
Applying with other transforms¶
>>> transform = A.Compose([
... A.RandomGamma(gamma_limit=(80, 120), p=0.5),
... A.RandomBrightnessContrast(p=0.5),
... ])
>>> augmented_image = transform(image=image)["image"]
References
- Gamma correction: https://en.wikipedia.org/wiki/Gamma_correction
- Power law (Gamma) encoding: https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomGamma(ImageOnlyTransform):
"""Applies random gamma correction to the input image.
Gamma correction, or simply gamma, is a nonlinear operation used to encode and decode luminance
or tristimulus values in imaging systems. This transform can adjust the brightness of an image
while preserving the relative differences between darker and lighter areas, making it useful
for simulating different lighting conditions or correcting for display characteristics.
Args:
gamma_limit (float | tuple[float, float]): If gamma_limit is a single float value, the range
will be (1, gamma_limit). If it's a tuple of two floats, they will serve as
the lower and upper bounds for gamma adjustment. Values are in terms of percentage change,
e.g., (80, 120) means the gamma will be between 80% and 120% of the original.
Default: (80, 120).
eps: A small value added to the gamma to avoid division by zero or log of zero errors.
Default: 1e-7.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
Any
Note:
- The gamma correction is applied using the formula: output = input^gamma
- Gamma values > 1 will make the image darker, while values < 1 will make it brighter
- This transform is particularly useful for:
* Simulating different lighting conditions
* Correcting for non-linear display characteristics
* Enhancing contrast in certain regions of the image
* Data augmentation in computer vision tasks
Mathematical Formulation:
Let I be the input image and G (gamma) be the correction factor.
The gamma correction is applied as follows:
1. Normalize the image to [0, 1] range: I_norm = I / 255 (for uint8 images)
2. Apply gamma correction: I_corrected = I_norm ^ (1 / G)
3. Scale back to original range: output = I_corrected * 255 (for uint8 images)
The actual gamma value used is calculated as:
G = 1 + (random_value / 100), where random_value is sampled from gamma_limit range.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Default usage
>>> transform = A.RandomGamma(p=1.0)
>>> augmented_image = transform(image=image)["image"]
# Custom gamma range
>>> transform = A.RandomGamma(gamma_limit=(50, 150), p=1.0)
>>> augmented_image = transform(image=image)["image"]
# Applying with other transforms
>>> transform = A.Compose([
... A.RandomGamma(gamma_limit=(80, 120), p=0.5),
... A.RandomBrightnessContrast(p=0.5),
... ])
>>> augmented_image = transform(image=image)["image"]
References:
- Gamma correction: https://en.wikipedia.org/wiki/Gamma_correction
- Power law (Gamma) encoding: https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
"""
class InitSchema(BaseTransformInitSchema):
gamma_limit: OnePlusFloatRangeType
def __init__(
self,
gamma_limit: ScaleFloatType = (80, 120),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.gamma_limit = cast(tuple[float, float], gamma_limit)
def apply(self, img: np.ndarray, gamma: float, **params: Any) -> np.ndarray:
return fmain.gamma_transform(img, gamma=gamma)
def get_params(self) -> dict[str, float]:
return {
"gamma": self.py_random.uniform(self.gamma_limit[0], self.gamma_limit[1]) / 100.0,
}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return ("gamma_limit",)
class RandomGravel
(gravel_roi=(0.1, 0.4, 0.9, 0.9), number_of_patches=2, always_apply=None, p=0.5)
[view source on GitHub] ¶
Adds gravel-like artifacts to the input image.
This transform simulates the appearance of gravel or small stones scattered across specific regions of an image. It's particularly useful for augmenting datasets of road or terrain images, adding realistic texture variations.
Parameters:
Name | Type | Description |
---|---|---|
gravel_roi | tuple[float, float, float, float] | Region of interest where gravel will be added, specified as (x_min, y_min, x_max, y_max) in relative coordinates [0, 1]. Default: (0.1, 0.4, 0.9, 0.9). |
number_of_patches | int | Number of gravel patch regions to generate within the ROI. Each patch will contain multiple gravel particles. Default: 2. |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: 3
Note
- The gravel effect is created by modifying the saturation channel in the HLS color space.
- Gravel particles are distributed within randomly generated patches inside the specified ROI.
- This transform is particularly useful for:
- Augmenting datasets for road condition analysis
- Simulating variations in terrain for computer vision tasks
- Adding realistic texture to synthetic images of outdoor scenes
Mathematical Formulation: For each gravel patch: 1. A rectangular region is randomly generated within the specified ROI. 2. Within this region, multiple gravel particles are placed. 3. For each particle: - Random (x, y) coordinates are generated within the patch. - A random radius (r) between 1 and 3 pixels is assigned. - A random saturation value (sat) between 0 and 255 is assigned. 4. The saturation channel of the image is modified for each particle: image_hls[y-r:y+r, x-r:x+r, 1] = sat
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Default usage¶
Custom ROI and number of patches¶
>>> transform = A.RandomGravel(
... gravel_roi=(0.2, 0.2, 0.8, 0.8),
... number_of_patches=5,
... p=1.0
... )
>>> augmented_image = transform(image=image)["image"]
Combining with other transforms¶
>>> transform = A.Compose([
... A.RandomGravel(p=0.7),
... A.RandomBrightnessContrast(p=0.5),
... ])
>>> augmented_image = transform(image=image)["image"]
References
- Road surface textures: https://en.wikipedia.org/wiki/Road_surface
- HLS color space: https://en.wikipedia.org/wiki/HSL_and_HSV
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomGravel(ImageOnlyTransform):
"""Adds gravel-like artifacts to the input image.
This transform simulates the appearance of gravel or small stones scattered across
specific regions of an image. It's particularly useful for augmenting datasets of
road or terrain images, adding realistic texture variations.
Args:
gravel_roi (tuple[float, float, float, float]): Region of interest where gravel
will be added, specified as (x_min, y_min, x_max, y_max) in relative coordinates
[0, 1]. Default: (0.1, 0.4, 0.9, 0.9).
number_of_patches (int): Number of gravel patch regions to generate within the ROI.
Each patch will contain multiple gravel particles. Default: 2.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
3
Note:
- The gravel effect is created by modifying the saturation channel in the HLS color space.
- Gravel particles are distributed within randomly generated patches inside the specified ROI.
- This transform is particularly useful for:
* Augmenting datasets for road condition analysis
* Simulating variations in terrain for computer vision tasks
* Adding realistic texture to synthetic images of outdoor scenes
Mathematical Formulation:
For each gravel patch:
1. A rectangular region is randomly generated within the specified ROI.
2. Within this region, multiple gravel particles are placed.
3. For each particle:
- Random (x, y) coordinates are generated within the patch.
- A random radius (r) between 1 and 3 pixels is assigned.
- A random saturation value (sat) between 0 and 255 is assigned.
4. The saturation channel of the image is modified for each particle:
image_hls[y-r:y+r, x-r:x+r, 1] = sat
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Default usage
>>> transform = A.RandomGravel(p=1.0)
>>> augmented_image = transform(image=image)["image"]
# Custom ROI and number of patches
>>> transform = A.RandomGravel(
... gravel_roi=(0.2, 0.2, 0.8, 0.8),
... number_of_patches=5,
... p=1.0
... )
>>> augmented_image = transform(image=image)["image"]
# Combining with other transforms
>>> transform = A.Compose([
... A.RandomGravel(p=0.7),
... A.RandomBrightnessContrast(p=0.5),
... ])
>>> augmented_image = transform(image=image)["image"]
References:
- Road surface textures: https://en.wikipedia.org/wiki/Road_surface
- HLS color space: https://en.wikipedia.org/wiki/HSL_and_HSV
"""
class InitSchema(BaseTransformInitSchema):
gravel_roi: tuple[float, float, float, float]
number_of_patches: int = Field(ge=1)
@model_validator(mode="after")
def validate_gravel_roi(self) -> Self:
gravel_lower_x, gravel_lower_y, gravel_upper_x, gravel_upper_y = self.gravel_roi
if not 0 <= gravel_lower_x < gravel_upper_x <= 1 or not 0 <= gravel_lower_y < gravel_upper_y <= 1:
raise ValueError(f"Invalid gravel_roi. Got: {self.gravel_roi}.")
return self
def __init__(
self,
gravel_roi: tuple[float, float, float, float] = (0.1, 0.4, 0.9, 0.9),
number_of_patches: int = 2,
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p, always_apply)
self.gravel_roi = gravel_roi
self.number_of_patches = number_of_patches
def generate_gravel_patch(
self,
rectangular_roi: tuple[int, int, int, int],
) -> np.ndarray:
x_min, y_min, x_max, y_max = rectangular_roi
area = abs((x_max - x_min) * (y_max - y_min))
count = area // 10
gravels = np.empty([count, 2], dtype=np.int64)
gravels[:, 0] = self.random_generator.integers(x_min, x_max, count)
gravels[:, 1] = self.random_generator.integers(y_min, y_max, count)
return gravels
def apply(
self,
img: np.ndarray,
gravels_infos: list[Any],
**params: Any,
) -> np.ndarray:
return fmain.add_gravel(img, gravels_infos)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, np.ndarray]:
height, width = params["shape"][:2]
# Calculate ROI in pixels
x_min, y_min, x_max, y_max = (
int(coord * dim) for coord, dim in zip(self.gravel_roi, [width, height, width, height])
)
roi_width = x_max - x_min
roi_height = y_max - y_min
gravels_info = []
for _ in range(self.number_of_patches):
# Generate a random rectangular region within the ROI
patch_width = self.py_random.randint(roi_width // 10, roi_width // 5)
patch_height = self.py_random.randint(roi_height // 10, roi_height // 5)
patch_x = self.py_random.randint(x_min, x_max - patch_width)
patch_y = self.py_random.randint(y_min, y_max - patch_height)
# Generate gravel particles within this patch
num_particles = (patch_width * patch_height) // 100 # Adjust this divisor to control density
for _ in range(num_particles):
x = self.py_random.randint(patch_x, patch_x + patch_width)
y = self.py_random.randint(patch_y, patch_y + patch_height)
r = self.py_random.randint(1, 3)
sat = self.py_random.randint(0, 255)
gravels_info.append(
[
max(y - r, 0), # min_y
min(y + r, height - 1), # max_y
max(x - r, 0), # min_x
min(x + r, width - 1), # max_x
sat, # saturation
],
)
return {"gravels_infos": np.array(gravels_info, dtype=np.int64)}
def get_transform_init_args_names(self) -> tuple[str, str]:
return "gravel_roi", "number_of_patches"
class RandomRain
(slant_lower=None, slant_upper=None, slant_range=(-10, 10), drop_length=20, drop_width=1, drop_color=(200, 200, 200), blur_value=7, brightness_coefficient=0.7, rain_type='default', always_apply=None, p=0.5)
[view source on GitHub] ¶
Adds rain effects to an image.
This transform simulates rainfall by overlaying semi-transparent streaks onto the image, creating a realistic rain effect. It can be used to augment datasets for computer vision tasks that need to perform well in rainy conditions.
Parameters:
Name | Type | Description |
---|---|---|
slant_range | tuple[int, int] | Range for the rain slant angle in degrees. Negative values slant to the left, positive to the right. Default: (-10, 10). |
drop_length | int | Length of the rain drops in pixels. Default: 20. |
drop_width | int | Width of the rain drops in pixels. Default: 1. |
drop_color | tuple[int, int, int] | Color of the rain drops in RGB format. Default: (200, 200, 200). |
blur_value | int | Blur value for simulating rain effect. Rainy views are typically blurry. Default: 7. |
brightness_coefficient | float | Coefficient to adjust the brightness of the image. Rainy scenes are usually darker. Should be in the range (0, 1]. Default: 0.7. |
rain_type | Literal["drizzle", "heavy", "torrential", "default"] | Type of rain to simulate. |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: 3
Note
- The rain effect is created by drawing semi-transparent lines on the image.
- The slant of the rain can be controlled to simulate wind effects.
- Different rain types (drizzle, heavy, torrential) adjust the density and appearance of the rain.
- The transform also adjusts image brightness and applies a blur to simulate the visual effects of rain.
- This transform is particularly useful for:
- Augmenting datasets for autonomous driving in rainy conditions
- Testing the robustness of computer vision models to weather effects
- Creating realistic rainy scenes for image editing or film production
Mathematical Formulation: For each raindrop: 1. Start position (x1, y1) is randomly generated within the image. 2. End position (x2, y2) is calculated based on drop_length and slant: x2 = x1 + drop_length * sin(slant) y2 = y1 + drop_length * cos(slant) 3. A line is drawn from (x1, y1) to (x2, y2) with the specified drop_color and drop_width. 4. The image is then blurred and its brightness is adjusted.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Default usage¶
Custom rain parameters¶
>>> transform = A.RandomRain(
... slant_range=(-15, 15),
... drop_length=30,
... drop_width=2,
... drop_color=(180, 180, 180),
... blur_value=5,
... brightness_coefficient=0.8,
... p=1.0
... )
>>> rainy_image = transform(image=image)["image"]
Simulating heavy rain¶
>>> transform = A.RandomRain(rain_type="heavy", p=1.0)
>>> heavy_rain_image = transform(image=image)["image"]
References
- Rain visualization techniques: https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-27-real-time-rain-rendering
- Weather effects in computer vision: https://www.sciencedirect.com/science/article/pii/S1077314220300692
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomRain(ImageOnlyTransform):
"""Adds rain effects to an image.
This transform simulates rainfall by overlaying semi-transparent streaks onto the image,
creating a realistic rain effect. It can be used to augment datasets for computer vision
tasks that need to perform well in rainy conditions.
Args:
slant_range (tuple[int, int]): Range for the rain slant angle in degrees.
Negative values slant to the left, positive to the right. Default: (-10, 10).
drop_length (int): Length of the rain drops in pixels. Default: 20.
drop_width (int): Width of the rain drops in pixels. Default: 1.
drop_color (tuple[int, int, int]): Color of the rain drops in RGB format. Default: (200, 200, 200).
blur_value (int): Blur value for simulating rain effect. Rainy views are typically blurry. Default: 7.
brightness_coefficient (float): Coefficient to adjust the brightness of the image.
Rainy scenes are usually darker. Should be in the range (0, 1]. Default: 0.7.
rain_type (Literal["drizzle", "heavy", "torrential", "default"]): Type of rain to simulate.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
3
Note:
- The rain effect is created by drawing semi-transparent lines on the image.
- The slant of the rain can be controlled to simulate wind effects.
- Different rain types (drizzle, heavy, torrential) adjust the density and appearance of the rain.
- The transform also adjusts image brightness and applies a blur to simulate the visual effects of rain.
- This transform is particularly useful for:
* Augmenting datasets for autonomous driving in rainy conditions
* Testing the robustness of computer vision models to weather effects
* Creating realistic rainy scenes for image editing or film production
Mathematical Formulation:
For each raindrop:
1. Start position (x1, y1) is randomly generated within the image.
2. End position (x2, y2) is calculated based on drop_length and slant:
x2 = x1 + drop_length * sin(slant)
y2 = y1 + drop_length * cos(slant)
3. A line is drawn from (x1, y1) to (x2, y2) with the specified drop_color and drop_width.
4. The image is then blurred and its brightness is adjusted.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Default usage
>>> transform = A.RandomRain(p=1.0)
>>> rainy_image = transform(image=image)["image"]
# Custom rain parameters
>>> transform = A.RandomRain(
... slant_range=(-15, 15),
... drop_length=30,
... drop_width=2,
... drop_color=(180, 180, 180),
... blur_value=5,
... brightness_coefficient=0.8,
... p=1.0
... )
>>> rainy_image = transform(image=image)["image"]
# Simulating heavy rain
>>> transform = A.RandomRain(rain_type="heavy", p=1.0)
>>> heavy_rain_image = transform(image=image)["image"]
References:
- Rain visualization techniques: https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-27-real-time-rain-rendering
- Weather effects in computer vision: https://www.sciencedirect.com/science/article/pii/S1077314220300692
"""
class InitSchema(BaseTransformInitSchema):
slant_lower: int | None = Field(default=None)
slant_upper: int | None = Field(default=None)
slant_range: Annotated[tuple[float, float], AfterValidator(nondecreasing)]
drop_length: int = Field(ge=1)
drop_width: int = Field(ge=1)
drop_color: tuple[int, int, int]
blur_value: int = Field(ge=1)
brightness_coefficient: float = Field(gt=0, le=1)
rain_type: RainMode
@model_validator(mode="after")
def validate_ranges(self) -> Self:
if self.slant_lower is not None or self.slant_upper is not None:
if self.slant_lower is not None:
warn(
"`slant_lower` deprecated. Use `slant_range` as tuple (slant_lower, slant_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
if self.slant_upper is not None:
warn(
"`slant_upper` deprecated. Use `slant_range` as tuple (slant_lower, slant_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
lower = self.slant_lower if self.slant_lower is not None else self.slant_range[0]
upper = self.slant_upper if self.slant_upper is not None else self.slant_range[1]
self.slant_range = (lower, upper)
self.slant_lower = None
self.slant_upper = None
# Validate the slant_range
if not (-MAX_RAIN_ANGLE <= self.slant_range[0] <= self.slant_range[1] <= MAX_RAIN_ANGLE):
raise ValueError(
f"slant_range values should be increasing within [-{MAX_RAIN_ANGLE}, {MAX_RAIN_ANGLE}] range.",
)
return self
def __init__(
self,
slant_lower: int | None = None,
slant_upper: int | None = None,
slant_range: tuple[int, int] = (-10, 10),
drop_length: int = 20,
drop_width: int = 1,
drop_color: tuple[int, int, int] = (200, 200, 200),
blur_value: int = 7,
brightness_coefficient: float = 0.7,
rain_type: RainMode = "default",
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.slant_range = slant_range
self.drop_length = drop_length
self.drop_width = drop_width
self.drop_color = drop_color
self.blur_value = blur_value
self.brightness_coefficient = brightness_coefficient
self.rain_type = rain_type
def apply(
self,
img: np.ndarray,
slant: int,
drop_length: int,
rain_drops: list[tuple[int, int]],
**params: Any,
) -> np.ndarray:
non_rgb_error(img)
return fmain.add_rain(
img,
slant,
drop_length,
self.drop_width,
self.drop_color,
self.blur_value,
self.brightness_coefficient,
rain_drops,
)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
slant = int(self.py_random.uniform(*self.slant_range))
height, width = params["shape"][:2]
area = height * width
if self.rain_type == "drizzle":
num_drops = area // 770
drop_length = 10
elif self.rain_type == "heavy":
num_drops = width * height // 600
drop_length = 30
elif self.rain_type == "torrential":
num_drops = area // 500
drop_length = 60
else:
drop_length = self.drop_length
num_drops = area // 600
rain_drops = []
for _ in range(num_drops): # If You want heavy rain, try increasing this
x = self.py_random.randint(slant, width) if slant < 0 else self.py_random.randint(0, max(width - slant, 0))
y = self.py_random.randint(0, max(height - drop_length, 0))
rain_drops.append((x, y))
return {"drop_length": drop_length, "slant": slant, "rain_drops": rain_drops}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return (
"slant_range",
"drop_length",
"drop_width",
"drop_color",
"blur_value",
"brightness_coefficient",
"rain_type",
)
class RandomShadow
(shadow_roi=(0, 0.5, 1, 1), num_shadows_limit=(1, 2), num_shadows_lower=None, num_shadows_upper=None, shadow_dimension=5, shadow_intensity_range=(0.5, 0.5), always_apply=None, p=0.5)
[view source on GitHub] ¶
Simulates shadows for the image by reducing the brightness of the image in shadow regions.
This transform adds realistic shadow effects to images, which can be useful for augmenting datasets for outdoor scene analysis, autonomous driving, or any computer vision task where shadows may be present.
Parameters:
Name | Type | Description |
---|---|---|
shadow_roi | tuple[float, float, float, float] | Region of the image where shadows will appear (x_min, y_min, x_max, y_max). All values should be in range [0, 1]. Default: (0, 0.5, 1, 1). |
num_shadows_limit | tuple[int, int] | Lower and upper limits for the possible number of shadows. Default: (1, 2). |
shadow_dimension | int | Number of edges in the shadow polygons. Default: 5. |
shadow_intensity_range | tuple[float, float] | Range for the shadow intensity. Larger value means darker shadow. Should be two float values between 0 and 1. Default: (0.5, 0.5). |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: Any
Note
- Shadows are created by generating random polygons within the specified ROI and reducing the brightness of the image in these areas.
- The number of shadows, their shapes, and intensities can be randomized for variety.
- This transform is particularly useful for:
- Augmenting datasets for outdoor scene understanding
- Improving robustness of object detection models to shadowed conditions
- Simulating different lighting conditions in synthetic datasets
Mathematical Formulation: For each shadow: 1. A polygon with shadow_dimension
vertices is generated within the shadow ROI. 2. The shadow intensity a is randomly chosen from shadow_intensity_range
. 3. For each pixel (x, y) within the polygon: new_pixel_value = original_pixel_value * (1 - a)
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Default usage¶
Custom shadow parameters¶
>>> transform = A.RandomShadow(
... shadow_roi=(0.2, 0.2, 0.8, 0.8),
... num_shadows_limit=(2, 4),
... shadow_dimension=8,
... shadow_intensity_range=(0.3, 0.7),
... p=1.0
... )
>>> shadowed_image = transform(image=image)["image"]
Combining with other transforms¶
>>> transform = A.Compose([
... A.RandomShadow(p=0.5),
... A.RandomBrightnessContrast(p=0.5),
... ])
>>> augmented_image = transform(image=image)["image"]
References
- Shadow detection and removal: https://www.sciencedirect.com/science/article/pii/S1047320315002035
- Shadows in computer vision: https://en.wikipedia.org/wiki/Shadow_detection
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomShadow(ImageOnlyTransform):
"""Simulates shadows for the image by reducing the brightness of the image in shadow regions.
This transform adds realistic shadow effects to images, which can be useful for augmenting
datasets for outdoor scene analysis, autonomous driving, or any computer vision task where
shadows may be present.
Args:
shadow_roi (tuple[float, float, float, float]): Region of the image where shadows
will appear (x_min, y_min, x_max, y_max). All values should be in range [0, 1].
Default: (0, 0.5, 1, 1).
num_shadows_limit (tuple[int, int]): Lower and upper limits for the possible number of shadows.
Default: (1, 2).
shadow_dimension (int): Number of edges in the shadow polygons. Default: 5.
shadow_intensity_range (tuple[float, float]): Range for the shadow intensity. Larger value
means darker shadow. Should be two float values between 0 and 1. Default: (0.5, 0.5).
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
Any
Note:
- Shadows are created by generating random polygons within the specified ROI and
reducing the brightness of the image in these areas.
- The number of shadows, their shapes, and intensities can be randomized for variety.
- This transform is particularly useful for:
* Augmenting datasets for outdoor scene understanding
* Improving robustness of object detection models to shadowed conditions
* Simulating different lighting conditions in synthetic datasets
Mathematical Formulation:
For each shadow:
1. A polygon with `shadow_dimension` vertices is generated within the shadow ROI.
2. The shadow intensity a is randomly chosen from `shadow_intensity_range`.
3. For each pixel (x, y) within the polygon:
new_pixel_value = original_pixel_value * (1 - a)
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Default usage
>>> transform = A.RandomShadow(p=1.0)
>>> shadowed_image = transform(image=image)["image"]
# Custom shadow parameters
>>> transform = A.RandomShadow(
... shadow_roi=(0.2, 0.2, 0.8, 0.8),
... num_shadows_limit=(2, 4),
... shadow_dimension=8,
... shadow_intensity_range=(0.3, 0.7),
... p=1.0
... )
>>> shadowed_image = transform(image=image)["image"]
# Combining with other transforms
>>> transform = A.Compose([
... A.RandomShadow(p=0.5),
... A.RandomBrightnessContrast(p=0.5),
... ])
>>> augmented_image = transform(image=image)["image"]
References:
- Shadow detection and removal: https://www.sciencedirect.com/science/article/pii/S1047320315002035
- Shadows in computer vision: https://en.wikipedia.org/wiki/Shadow_detection
"""
class InitSchema(BaseTransformInitSchema):
shadow_roi: tuple[float, float, float, float]
num_shadows_limit: Annotated[
tuple[int, int],
AfterValidator(check_range_bounds(1, None)),
AfterValidator(nondecreasing),
]
num_shadows_lower: int | None
num_shadows_upper: int | None
shadow_dimension: int = Field(ge=3)
shadow_intensity_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
AfterValidator(nondecreasing),
]
@model_validator(mode="after")
def validate_shadows(self) -> Self:
if self.num_shadows_lower is not None:
warn(
"`num_shadows_lower` is deprecated. Use `num_shadows_limit` instead.",
DeprecationWarning,
stacklevel=2,
)
if self.num_shadows_upper is not None:
warn(
"`num_shadows_upper` is deprecated. Use `num_shadows_limit` instead.",
DeprecationWarning,
stacklevel=2,
)
if self.num_shadows_lower is not None or self.num_shadows_upper is not None:
num_shadows_lower = (
self.num_shadows_lower if self.num_shadows_lower is not None else self.num_shadows_limit[0]
)
num_shadows_upper = (
self.num_shadows_upper if self.num_shadows_upper is not None else self.num_shadows_limit[1]
)
self.num_shadows_limit = (num_shadows_lower, num_shadows_upper)
self.num_shadows_lower = None
self.num_shadows_upper = None
shadow_lower_x, shadow_lower_y, shadow_upper_x, shadow_upper_y = self.shadow_roi
if not 0 <= shadow_lower_x <= shadow_upper_x <= 1 or not 0 <= shadow_lower_y <= shadow_upper_y <= 1:
raise ValueError(f"Invalid shadow_roi. Got: {self.shadow_roi}")
if isinstance(self.shadow_intensity_range, float):
if not (0 <= self.shadow_intensity_range <= 1):
raise ValueError(
f"shadow_intensity_range value should be within [0, 1] range. "
f"Got: {self.shadow_intensity_range}",
)
elif isinstance(self.shadow_intensity_range, tuple):
if not (0 <= self.shadow_intensity_range[0] <= self.shadow_intensity_range[1] <= 1):
raise ValueError(
f"shadow_intensity_range values should be within [0, 1] range and increasing. "
f"Got: {self.shadow_intensity_range}",
)
else:
raise TypeError(
"shadow_intensity_range should be an float or a tuple of floats.",
)
return self
def __init__(
self,
shadow_roi: tuple[float, float, float, float] = (0, 0.5, 1, 1),
num_shadows_limit: tuple[int, int] = (1, 2),
num_shadows_lower: int | None = None,
num_shadows_upper: int | None = None,
shadow_dimension: int = 5,
shadow_intensity_range: tuple[float, float] = (0.5, 0.5),
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.shadow_roi = shadow_roi
self.shadow_dimension = shadow_dimension
self.num_shadows_limit = num_shadows_limit
self.shadow_intensity_range = shadow_intensity_range
def apply(
self,
img: np.ndarray,
vertices_list: list[np.ndarray],
intensities: np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.add_shadow(img, vertices_list, intensities)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, list[np.ndarray]]:
height, width = params["shape"][:2]
num_shadows = self.py_random.randint(*self.num_shadows_limit)
x_min, y_min, x_max, y_max = self.shadow_roi
x_min = int(x_min * width)
x_max = int(x_max * width)
y_min = int(y_min * height)
y_max = int(y_max * height)
vertices_list = [
np.stack(
[
self.random_generator.integers(
x_min,
x_max,
size=self.shadow_dimension,
),
self.random_generator.integers(
y_min,
y_max,
size=self.shadow_dimension,
),
],
axis=1,
)
for _ in range(num_shadows)
]
# Sample shadow intensity for each shadow
intensities = self.random_generator.uniform(
*self.shadow_intensity_range,
size=num_shadows,
)
return {"vertices_list": vertices_list, "intensities": intensities}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return (
"shadow_roi",
"num_shadows_limit",
"shadow_dimension",
)
class RandomSnow
(snow_point_lower=None, snow_point_upper=None, brightness_coeff=2.5, snow_point_range=(0.1, 0.3), method='bleach', always_apply=None, p=0.5)
[view source on GitHub] ¶
Applies a random snow effect to the input image.
This transform simulates snowfall by either bleaching out some pixel values or adding a snow texture to the image, depending on the chosen method.
Parameters:
Name | Type | Description |
---|---|---|
snow_point_range | tuple[float, float] | Range for the snow point threshold. Both values should be in the (0, 1) range. Default: (0.1, 0.3). |
brightness_coeff | float | Coefficient applied to increase the brightness of pixels below the snow_point threshold. Larger values lead to more pronounced snow effects. Should be > 0. Default: 2.5. |
method | Literal["bleach", "texture"] | The snow simulation method to use. Options are: - "bleach": Uses a simple pixel value thresholding technique. - "texture": Applies a more realistic snow texture overlay. Default: "texture". |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Note
- The "bleach" method increases the brightness of pixels above a certain threshold, creating a simple snow effect. This method is faster but may look less realistic.
- The "texture" method creates a more realistic snow effect through the following steps:
- Converts the image to HSV color space for better control over brightness.
- Increases overall image brightness to simulate the reflective nature of snow.
- Generates a snow texture using Gaussian noise, which is then smoothed with a Gaussian filter.
- Applies a depth effect to the snow texture, making it more prominent at the top of the image.
- Blends the snow texture with the original image using alpha compositing.
- Adds a slight blue tint to simulate the cool color of snow.
- Adds random sparkle effects to simulate light reflecting off snow crystals. This method produces a more realistic result but is computationally more expensive.
Mathematical Formulation: For the "bleach" method: Let L be the lightness channel in HLS color space. For each pixel (i, j): If L[i, j] > snow_point: L[i, j] = L[i, j] * brightness_coeff
For the "texture" method:
1. Brightness adjustment: V_new = V * (1 + brightness_coeff * snow_point)
2. Snow texture generation: T = GaussianFilter(GaussianNoise(μ=0.5, sigma=0.3))
3. Depth effect: D = LinearGradient(1.0 to 0.2)
4. Final pixel value: P = (1 - alpha) * original_pixel + alpha * (T * D * 255)
where alpha is the snow intensity factor derived from snow_point.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Default usage (bleach method)¶
Using texture method with custom parameters¶
>>> transform = A.RandomSnow(
... snow_point_range=(0.2, 0.4),
... brightness_coeff=2.0,
... method="texture",
... p=1.0
... )
>>> snowy_image = transform(image=image)["image"]
References
- Bleach method: https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
- Texture method: Inspired by computer graphics techniques for snow rendering and atmospheric scattering simulations.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomSnow(ImageOnlyTransform):
"""Applies a random snow effect to the input image.
This transform simulates snowfall by either bleaching out some pixel values or
adding a snow texture to the image, depending on the chosen method.
Args:
snow_point_range (tuple[float, float]): Range for the snow point threshold.
Both values should be in the (0, 1) range. Default: (0.1, 0.3).
brightness_coeff (float): Coefficient applied to increase the brightness of pixels
below the snow_point threshold. Larger values lead to more pronounced snow effects.
Should be > 0. Default: 2.5.
method (Literal["bleach", "texture"]): The snow simulation method to use. Options are:
- "bleach": Uses a simple pixel value thresholding technique.
- "texture": Applies a more realistic snow texture overlay.
Default: "texture".
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Note:
- The "bleach" method increases the brightness of pixels above a certain threshold,
creating a simple snow effect. This method is faster but may look less realistic.
- The "texture" method creates a more realistic snow effect through the following steps:
1. Converts the image to HSV color space for better control over brightness.
2. Increases overall image brightness to simulate the reflective nature of snow.
3. Generates a snow texture using Gaussian noise, which is then smoothed with a Gaussian filter.
4. Applies a depth effect to the snow texture, making it more prominent at the top of the image.
5. Blends the snow texture with the original image using alpha compositing.
6. Adds a slight blue tint to simulate the cool color of snow.
7. Adds random sparkle effects to simulate light reflecting off snow crystals.
This method produces a more realistic result but is computationally more expensive.
Mathematical Formulation:
For the "bleach" method:
Let L be the lightness channel in HLS color space.
For each pixel (i, j):
If L[i, j] > snow_point:
L[i, j] = L[i, j] * brightness_coeff
For the "texture" method:
1. Brightness adjustment: V_new = V * (1 + brightness_coeff * snow_point)
2. Snow texture generation: T = GaussianFilter(GaussianNoise(μ=0.5, sigma=0.3))
3. Depth effect: D = LinearGradient(1.0 to 0.2)
4. Final pixel value: P = (1 - alpha) * original_pixel + alpha * (T * D * 255)
where alpha is the snow intensity factor derived from snow_point.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Default usage (bleach method)
>>> transform = A.RandomSnow(p=1.0)
>>> snowy_image = transform(image=image)["image"]
# Using texture method with custom parameters
>>> transform = A.RandomSnow(
... snow_point_range=(0.2, 0.4),
... brightness_coeff=2.0,
... method="texture",
... p=1.0
... )
>>> snowy_image = transform(image=image)["image"]
References:
- Bleach method: https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
- Texture method: Inspired by computer graphics techniques for snow rendering
and atmospheric scattering simulations.
"""
class InitSchema(BaseTransformInitSchema):
snow_point_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
AfterValidator(nondecreasing),
]
snow_point_lower: float | None = Field(
gt=0,
lt=1,
)
snow_point_upper: float | None = Field(
gt=0,
lt=1,
)
brightness_coeff: float = Field(gt=0)
method: Literal["bleach", "texture"]
@model_validator(mode="after")
def validate_ranges(self) -> Self:
if self.snow_point_lower is not None or self.snow_point_upper is not None:
if self.snow_point_lower is not None:
warn(
"`snow_point_lower` deprecated. Use `snow_point_range` as tuple"
" (snow_point_lower, snow_point_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
if self.snow_point_upper is not None:
warn(
"`snow_point_upper` deprecated. Use `snow_point_range` as tuple"
"(snow_point_lower, snow_point_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
lower = self.snow_point_lower if self.snow_point_lower is not None else self.snow_point_range[0]
upper = self.snow_point_upper if self.snow_point_upper is not None else self.snow_point_range[1]
self.snow_point_range = (lower, upper)
self.snow_point_lower = None
self.snow_point_upper = None
# Validate the snow_point_range
if not (0 < self.snow_point_range[0] <= self.snow_point_range[1] < 1):
raise ValueError(
"snow_point_range values should be increasing within (0, 1) range.",
)
return self
def __init__(
self,
snow_point_lower: float | None = None,
snow_point_upper: float | None = None,
brightness_coeff: float = 2.5,
snow_point_range: tuple[float, float] = (0.1, 0.3),
method: Literal["bleach", "texture"] = "bleach",
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.snow_point_range = snow_point_range
self.brightness_coeff = brightness_coeff
self.method = method
def apply(
self,
img: np.ndarray,
snow_point: float,
snow_texture: np.ndarray,
sparkle_mask: np.ndarray,
**params: Any,
) -> np.ndarray:
non_rgb_error(img)
if self.method == "bleach":
return fmain.add_snow_bleach(img, snow_point, self.brightness_coeff)
if self.method == "texture":
return fmain.add_snow_texture(
img,
snow_point,
self.brightness_coeff,
snow_texture,
sparkle_mask,
)
raise ValueError(f"Unknown snow method: {self.method}")
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, np.ndarray | None]:
image_shape = params["shape"][:2]
result = {
"snow_point": self.py_random.uniform(*self.snow_point_range),
"snow_texture": None,
"sparkle_mask": None,
}
if self.method == "texture":
snow_texture, sparkle_mask = fmain.generate_snow_textures(
img_shape=image_shape,
random_generator=self.random_generator,
)
result["snow_texture"] = snow_texture
result["sparkle_mask"] = sparkle_mask
return result
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "snow_point_range", "brightness_coeff", "method"
class RandomSunFlare
(flare_roi=(0, 0, 1, 0.5), angle_lower=None, angle_upper=None, num_flare_circles_lower=None, num_flare_circles_upper=None, src_radius=400, src_color=(255, 255, 255), angle_range=(0, 1), num_flare_circles_range=(6, 10), method='overlay', always_apply=None, p=0.5)
[view source on GitHub] ¶
Simulates a sun flare effect on the image by adding circles of light.
This transform creates a sun flare effect by overlaying multiple semi-transparent circles of varying sizes and intensities along a line originating from a "sun" point. It offers two methods: a simple overlay technique and a more complex physics-based approach.
Parameters:
Name | Type | Description |
---|---|---|
flare_roi | tuple[float, float, float, float] | Region of interest where the sun flare can appear. Values are in the range [0, 1] and represent (x_min, y_min, x_max, y_max) in relative coordinates. Default: (0, 0, 1, 0.5). |
angle_range | tuple[float, float] | Range of angles (in radians) for the flare direction. Values should be in the range [0, 1], where 0 represents 0 radians and 1 represents 2π radians. Default: (0, 1). |
num_flare_circles_range | tuple[int, int] | Range for the number of flare circles to generate. Default: (6, 10). |
src_radius | int | Radius of the sun circle in pixels. Default: 400. |
src_color | tuple[int, int, int] | Color of the sun in RGB format. Default: (255, 255, 255). |
method | Literal["overlay", "physics_based"] | Method to use for generating the sun flare. "overlay" uses a simple alpha blending technique, while "physics_based" simulates more realistic optical phenomena. Default: "physics_based". |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: 3
Note
The transform offers two methods for generating sun flares:
- Overlay Method ("overlay"):
- Creates a simple sun flare effect using basic alpha blending.
- Steps: a. Generate the main sun circle with a radial gradient. b. Create smaller flare circles along the flare line. c. Blend these elements with the original image using alpha compositing.
-
Characteristics:
- Faster computation
- Less realistic appearance
- Suitable for basic augmentation or when performance is a priority
-
Physics-based Method ("physics_based"):
- Simulates more realistic optical phenomena observed in actual lens flares.
- Steps: a. Create a separate flare layer for complex manipulations. b. Add the main sun circle and diffraction spikes to simulate light diffraction. c. Generate and add multiple flare circles with varying properties. d. Apply Gaussian blur to create a soft, glowing effect. e. Create and apply a radial gradient mask for natural fading from the center. f. Simulate chromatic aberration by applying different blurs to color channels. g. Blend the flare with the original image using screen blending mode.
- Characteristics:
- More computationally intensive
- Produces more realistic and visually appealing results
- Includes effects like diffraction spikes and chromatic aberration
- Suitable for high-quality augmentation or realistic image synthesis
Mathematical Formulation: For both methods: 1. Sun position (x_s, y_s) is randomly chosen within the specified ROI. 2. Flare angle θ is randomly chosen from the angle_range. 3. For each flare circle i: - Position (x_i, y_i) = (x_s + t_i * cos(θ), y_s + t_i * sin(θ)) where t_i is a random distance along the flare line. - Radius r_i is randomly chosen, with larger circles closer to the sun. - Alpha (transparency) alpha_i is randomly chosen in the range [0.05, 0.2]. - Color (R_i, G_i, B_i) is randomly chosen close to src_color.
Overlay method blending:
new_pixel = (1 - alpha_i) * original_pixel + alpha_i * flare_color_i
Physics-based method blending:
new_pixel = 255 - ((255 - original_pixel) * (255 - flare_pixel) / 255)
4. Each flare circle is blended with the image using alpha compositing:
new_pixel = (1 - alpha_i) * original_pixel + alpha_i * flare_color_i
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [1000, 1000, 3], dtype=np.uint8)
Default sun flare (overlay method)¶
Physics-based sun flare with custom parameters¶
Default sun flare¶
Custom sun flare parameters¶
>>> transform = A.RandomSunFlare(
... flare_roi=(0.1, 0, 0.9, 0.3),
... angle_range=(0.25, 0.75),
... num_flare_circles_range=(5, 15),
... src_radius=200,
... src_color=(255, 200, 100),
... method="physics_based",
... p=1.0
... )
>>> flared_image = transform(image=image)["image"]
References
- Lens flare: https://en.wikipedia.org/wiki/Lens_flare
- Alpha compositing: https://en.wikipedia.org/wiki/Alpha_compositing
- Diffraction: https://en.wikipedia.org/wiki/Diffraction
- Chromatic aberration: https://en.wikipedia.org/wiki/Chromatic_aberration
- Screen blending: https://en.wikipedia.org/wiki/Blend_modes#Screen
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomSunFlare(ImageOnlyTransform):
"""Simulates a sun flare effect on the image by adding circles of light.
This transform creates a sun flare effect by overlaying multiple semi-transparent
circles of varying sizes and intensities along a line originating from a "sun" point.
It offers two methods: a simple overlay technique and a more complex physics-based approach.
Args:
flare_roi (tuple[float, float, float, float]): Region of interest where the sun flare
can appear. Values are in the range [0, 1] and represent (x_min, y_min, x_max, y_max)
in relative coordinates. Default: (0, 0, 1, 0.5).
angle_range (tuple[float, float]): Range of angles (in radians) for the flare direction.
Values should be in the range [0, 1], where 0 represents 0 radians and 1 represents 2π radians.
Default: (0, 1).
num_flare_circles_range (tuple[int, int]): Range for the number of flare circles to generate.
Default: (6, 10).
src_radius (int): Radius of the sun circle in pixels. Default: 400.
src_color (tuple[int, int, int]): Color of the sun in RGB format. Default: (255, 255, 255).
method (Literal["overlay", "physics_based"]): Method to use for generating the sun flare.
"overlay" uses a simple alpha blending technique, while "physics_based" simulates
more realistic optical phenomena. Default: "physics_based".
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
3
Note:
The transform offers two methods for generating sun flares:
1. Overlay Method ("overlay"):
- Creates a simple sun flare effect using basic alpha blending.
- Steps:
a. Generate the main sun circle with a radial gradient.
b. Create smaller flare circles along the flare line.
c. Blend these elements with the original image using alpha compositing.
- Characteristics:
* Faster computation
* Less realistic appearance
* Suitable for basic augmentation or when performance is a priority
2. Physics-based Method ("physics_based"):
- Simulates more realistic optical phenomena observed in actual lens flares.
- Steps:
a. Create a separate flare layer for complex manipulations.
b. Add the main sun circle and diffraction spikes to simulate light diffraction.
c. Generate and add multiple flare circles with varying properties.
d. Apply Gaussian blur to create a soft, glowing effect.
e. Create and apply a radial gradient mask for natural fading from the center.
f. Simulate chromatic aberration by applying different blurs to color channels.
g. Blend the flare with the original image using screen blending mode.
- Characteristics:
* More computationally intensive
* Produces more realistic and visually appealing results
* Includes effects like diffraction spikes and chromatic aberration
* Suitable for high-quality augmentation or realistic image synthesis
Mathematical Formulation:
For both methods:
1. Sun position (x_s, y_s) is randomly chosen within the specified ROI.
2. Flare angle θ is randomly chosen from the angle_range.
3. For each flare circle i:
- Position (x_i, y_i) = (x_s + t_i * cos(θ), y_s + t_i * sin(θ))
where t_i is a random distance along the flare line.
- Radius r_i is randomly chosen, with larger circles closer to the sun.
- Alpha (transparency) alpha_i is randomly chosen in the range [0.05, 0.2].
- Color (R_i, G_i, B_i) is randomly chosen close to src_color.
Overlay method blending:
new_pixel = (1 - alpha_i) * original_pixel + alpha_i * flare_color_i
Physics-based method blending:
new_pixel = 255 - ((255 - original_pixel) * (255 - flare_pixel) / 255)
4. Each flare circle is blended with the image using alpha compositing:
new_pixel = (1 - alpha_i) * original_pixel + alpha_i * flare_color_i
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [1000, 1000, 3], dtype=np.uint8)
# Default sun flare (overlay method)
>>> transform = A.RandomSunFlare(p=1.0)
>>> flared_image = transform(image=image)["image"]
# Physics-based sun flare with custom parameters
# Default sun flare
>>> transform = A.RandomSunFlare(p=1.0)
>>> flared_image = transform(image=image)["image"]
# Custom sun flare parameters
>>> transform = A.RandomSunFlare(
... flare_roi=(0.1, 0, 0.9, 0.3),
... angle_range=(0.25, 0.75),
... num_flare_circles_range=(5, 15),
... src_radius=200,
... src_color=(255, 200, 100),
... method="physics_based",
... p=1.0
... )
>>> flared_image = transform(image=image)["image"]
References:
- Lens flare: https://en.wikipedia.org/wiki/Lens_flare
- Alpha compositing: https://en.wikipedia.org/wiki/Alpha_compositing
- Diffraction: https://en.wikipedia.org/wiki/Diffraction
- Chromatic aberration: https://en.wikipedia.org/wiki/Chromatic_aberration
- Screen blending: https://en.wikipedia.org/wiki/Blend_modes#Screen
"""
class InitSchema(BaseTransformInitSchema):
flare_roi: tuple[float, float, float, float]
angle_lower: float | None = Field(ge=0, le=1)
angle_upper: float | None = Field(ge=0, le=1)
num_flare_circles_lower: int | None = Field(
ge=0,
)
num_flare_circles_upper: int | None = Field(
gt=0,
)
src_radius: int = Field(gt=1)
src_color: tuple[int, ...]
angle_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
AfterValidator(nondecreasing),
]
num_flare_circles_range: Annotated[
tuple[int, int],
AfterValidator(check_range_bounds(1, None)),
AfterValidator(nondecreasing),
]
method: Literal["overlay", "physics_based"]
@model_validator(mode="after")
def validate_parameters(self) -> Self:
(
flare_center_lower_x,
flare_center_lower_y,
flare_center_upper_x,
flare_center_upper_y,
) = self.flare_roi
if (
not 0 <= flare_center_lower_x < flare_center_upper_x <= 1
or not 0 <= flare_center_lower_y < flare_center_upper_y <= 1
):
raise ValueError(f"Invalid flare_roi. Got: {self.flare_roi}")
if self.angle_lower is not None or self.angle_upper is not None:
if self.angle_lower is not None:
warn(
"`angle_lower` deprecated. Use `angle_range` as tuple (angle_lower, angle_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
if self.angle_upper is not None:
warn(
"`angle_upper` deprecated. Use `angle_range` as tuple(angle_lower, angle_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
lower = self.angle_lower if self.angle_lower is not None else self.angle_range[0]
upper = self.angle_upper if self.angle_upper is not None else self.angle_range[1]
self.angle_range = (lower, upper)
if self.num_flare_circles_lower is not None or self.num_flare_circles_upper is not None:
if self.num_flare_circles_lower is not None:
warn(
"`num_flare_circles_lower` deprecated. Use `num_flare_circles_range` as tuple"
" (num_flare_circles_lower, num_flare_circles_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
if self.num_flare_circles_upper is not None:
warn(
"`num_flare_circles_upper` deprecated. Use `num_flare_circles_range` as tuple"
" (num_flare_circles_lower, num_flare_circles_upper) instead.",
DeprecationWarning,
stacklevel=2,
)
lower = (
self.num_flare_circles_lower
if self.num_flare_circles_lower is not None
else self.num_flare_circles_range[0]
)
upper = (
self.num_flare_circles_upper
if self.num_flare_circles_upper is not None
else self.num_flare_circles_range[1]
)
self.num_flare_circles_range = (lower, upper)
return self
def __init__(
self,
flare_roi: tuple[float, float, float, float] = (0, 0, 1, 0.5),
angle_lower: float | None = None,
angle_upper: float | None = None,
num_flare_circles_lower: int | None = None,
num_flare_circles_upper: int | None = None,
src_radius: int = 400,
src_color: tuple[int, ...] = (255, 255, 255),
angle_range: tuple[float, float] = (0, 1),
num_flare_circles_range: tuple[int, int] = (6, 10),
method: Literal["overlay", "physics_based"] = "overlay",
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.angle_range = angle_range
self.num_flare_circles_range = num_flare_circles_range
self.src_radius = src_radius
self.src_color = src_color
self.flare_roi = flare_roi
self.method = method
def apply(
self,
img: np.ndarray,
flare_center: tuple[float, float],
circles: list[Any],
**params: Any,
) -> np.ndarray:
non_rgb_error(img)
if self.method == "overlay":
return fmain.add_sun_flare_overlay(
img,
flare_center,
self.src_radius,
self.src_color,
circles,
)
if self.method == "physics_based":
return fmain.add_sun_flare_physics_based(
img,
flare_center,
self.src_radius,
self.src_color,
circles,
)
raise ValueError(f"Invalid method: {self.method}")
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
height, width = params["shape"][:2]
diagonal = math.sqrt(height**2 + width**2)
angle = 2 * math.pi * self.py_random.uniform(*self.angle_range)
# Calculate flare center in pixel coordinates
x_min, y_min, x_max, y_max = self.flare_roi
flare_center_x = int(width * self.py_random.uniform(x_min, x_max))
flare_center_y = int(height * self.py_random.uniform(y_min, y_max))
num_circles = self.py_random.randint(*self.num_flare_circles_range)
# Calculate parameters relative to image size
step_size = max(1, int(diagonal * 0.01)) # 1% of diagonal, minimum 1 pixel
max_radius = max(2, int(height * 0.01)) # 1% of height, minimum 2 pixels
color_range = int(max(self.src_color) * 0.2) # 20% of max color value
def line(t: float) -> tuple[float, float]:
return (
flare_center_x + t * math.cos(angle),
flare_center_y + t * math.sin(angle),
)
# Generate points along the flare line
t_range = range(-flare_center_x, width - flare_center_x, step_size)
points = [line(t) for t in t_range]
circles = []
for _ in range(num_circles):
alpha = self.py_random.uniform(0.05, 0.2)
point = self.py_random.choice(points)
rad = self.py_random.randint(1, max_radius)
# Generate colors relative to src_color
colors = [self.py_random.randint(max(c - color_range, 0), c) for c in self.src_color]
circles.append(
(
alpha,
(int(point[0]), int(point[1])),
pow(rad, 3),
tuple(colors),
),
)
return {
"circles": circles,
"flare_center": (flare_center_x, flare_center_y),
}
def get_transform_init_args(self) -> dict[str, Any]:
return {
"flare_roi": self.flare_roi,
"angle_range": self.angle_range,
"num_flare_circles_range": self.num_flare_circles_range,
"src_radius": self.src_radius,
"src_color": self.src_color,
}
class RandomToneCurve
(scale=0.1, per_channel=False, always_apply=None, p=0.5)
[view source on GitHub] ¶
Randomly change the relationship between bright and dark areas of the image by manipulating its tone curve.
This transform applies a random S-curve to the image's tone curve, adjusting the brightness and contrast in a non-linear manner. It can be applied to the entire image or to each channel separately.
Parameters:
Name | Type | Description |
---|---|---|
scale | float | Standard deviation of the normal distribution used to sample random distances to move two control points that modify the image's curve. Values should be in range [0, 1]. Higher values will result in more dramatic changes to the image. Default: 0.1 |
per_channel | bool | If True, the tone curve will be applied to each channel of the input image separately, which can lead to color distortion. If False, the same curve is applied to all channels, preserving the original color relationships. Default: False |
p | float | Probability of applying the transform. Default: 0.5 |
Targets
image
Image types: uint8, float32
Number of channels: Any
Note
- This transform modifies the image's histogram by applying a smooth, S-shaped curve to it.
- The S-curve is defined by moving two control points of a quadratic Bézier curve.
- When per_channel is False, the same curve is applied to all channels, maintaining color balance.
- When per_channel is True, different curves are applied to each channel, which can create color shifts.
- This transform can be used to adjust image contrast and brightness in a more natural way than linear transforms.
- The effect can range from subtle contrast adjustments to more dramatic "vintage" or "faded" looks.
Mathematical Formulation: 1. Two control points are randomly moved from their default positions (0.25, 0.25) and (0.75, 0.75). 2. The new positions are sampled from a normal distribution: N(μ, σ²), where μ is the original position and alpha is the scale parameter. 3. These points, along with fixed points at (0, 0) and (1, 1), define a quadratic Bézier curve. 4. The curve is applied as a lookup table to the image intensities: new_intensity = curve(original_intensity)
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
Apply a random tone curve to all channels together¶
>>> transform = A.RandomToneCurve(scale=0.1, per_channel=False, p=1.0)
>>> augmented_image = transform(image=image)['image']
Apply random tone curves to each channel separately¶
>>> transform = A.RandomToneCurve(scale=0.2, per_channel=True, p=1.0)
>>> augmented_image = transform(image=image)['image']
References
- "What Else Can Fool Deep Learning? Addressing Color Constancy Errors on Deep Neural Network Performance" by Mahmoud Afifi and Michael S. Brown, ICCV 2019.
- Bézier curve: https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Quadratic_B%C3%A9zier_curves
- Tone mapping: https://en.wikipedia.org/wiki/Tone_mapping
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RandomToneCurve(ImageOnlyTransform):
"""Randomly change the relationship between bright and dark areas of the image by manipulating its tone curve.
This transform applies a random S-curve to the image's tone curve, adjusting the brightness and contrast
in a non-linear manner. It can be applied to the entire image or to each channel separately.
Args:
scale (float): Standard deviation of the normal distribution used to sample random distances
to move two control points that modify the image's curve. Values should be in range [0, 1].
Higher values will result in more dramatic changes to the image. Default: 0.1
per_channel (bool): If True, the tone curve will be applied to each channel of the input image separately,
which can lead to color distortion. If False, the same curve is applied to all channels,
preserving the original color relationships. Default: False
p (float): Probability of applying the transform. Default: 0.5
Targets:
image
Image types:
uint8, float32
Number of channels:
Any
Note:
- This transform modifies the image's histogram by applying a smooth, S-shaped curve to it.
- The S-curve is defined by moving two control points of a quadratic Bézier curve.
- When per_channel is False, the same curve is applied to all channels, maintaining color balance.
- When per_channel is True, different curves are applied to each channel, which can create color shifts.
- This transform can be used to adjust image contrast and brightness in a more natural way than linear
transforms.
- The effect can range from subtle contrast adjustments to more dramatic "vintage" or "faded" looks.
Mathematical Formulation:
1. Two control points are randomly moved from their default positions (0.25, 0.25) and (0.75, 0.75).
2. The new positions are sampled from a normal distribution: N(μ, σ²), where μ is the original position
and alpha is the scale parameter.
3. These points, along with fixed points at (0, 0) and (1, 1), define a quadratic Bézier curve.
4. The curve is applied as a lookup table to the image intensities:
new_intensity = curve(original_intensity)
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
# Apply a random tone curve to all channels together
>>> transform = A.RandomToneCurve(scale=0.1, per_channel=False, p=1.0)
>>> augmented_image = transform(image=image)['image']
# Apply random tone curves to each channel separately
>>> transform = A.RandomToneCurve(scale=0.2, per_channel=True, p=1.0)
>>> augmented_image = transform(image=image)['image']
References:
- "What Else Can Fool Deep Learning? Addressing Color Constancy Errors on Deep Neural Network Performance"
by Mahmoud Afifi and Michael S. Brown, ICCV 2019.
- Bézier curve: https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Quadratic_B%C3%A9zier_curves
- Tone mapping: https://en.wikipedia.org/wiki/Tone_mapping
"""
class InitSchema(BaseTransformInitSchema):
scale: float = Field(
ge=0,
le=1,
)
per_channel: bool
def __init__(
self,
scale: float = 0.1,
per_channel: bool = False,
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.scale = scale
self.per_channel = per_channel
def apply(
self,
img: np.ndarray,
low_y: float | np.ndarray,
high_y: float | np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.move_tone_curve(img, low_y, high_y)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
image = data["image"] if "image" in data else data["images"][0]
num_channels = get_num_channels(image)
if self.per_channel and num_channels != 1:
return {
"low_y": np.clip(
self.random_generator.normal(
loc=0.25,
scale=self.scale,
size=(num_channels,),
),
0,
1,
),
"high_y": np.clip(
self.random_generator.normal(
loc=0.75,
scale=self.scale,
size=(num_channels,),
),
0,
1,
),
}
# Same values for all channels
low_y = np.clip(self.random_generator.normal(loc=0.25, scale=self.scale), 0, 1)
high_y = np.clip(self.random_generator.normal(loc=0.75, scale=self.scale), 0, 1)
return {"low_y": low_y, "high_y": high_y}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "scale", "per_channel"
class RingingOvershoot
(blur_limit=(7, 15), cutoff=(0.7853981633974483, 1.5707963267948966), p=0.5, always_apply=None)
[view source on GitHub] ¶
Create ringing or overshoot artifacts by convolving the image with a 2D sinc filter.
This transform simulates the ringing artifacts that can occur in digital image processing, particularly after sharpening or edge enhancement operations. It creates oscillations or overshoots near sharp transitions in the image.
Parameters:
Name | Type | Description |
---|---|---|
blur_limit | tuple[int, int] | int | Maximum kernel size for the sinc filter. Must be an odd number in the range [3, inf). If a single int is provided, the kernel size will be randomly chosen from the range (3, blur_limit). If a tuple (min, max) is provided, the kernel size will be randomly chosen from the range (min, max). Default: (7, 15). |
cutoff | tuple[float, float] | Range to choose the cutoff frequency in radians. Values should be in the range (0, π). A lower cutoff frequency will result in more pronounced ringing effects. Default: (π/4, π/2). |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Number of channels: Any
Note
- Ringing artifacts are oscillations of the image intensity function in the neighborhood of sharp transitions, such as edges or object boundaries.
- This transform uses a 2D sinc filter (also known as a 2D cardinal sine function) to introduce these artifacts.
- The severity of the ringing effect is controlled by both the kernel size (blur_limit) and the cutoff frequency.
- Larger kernel sizes and lower cutoff frequencies will generally produce more noticeable ringing effects.
- This transform can be useful for:
- Simulating imperfections in image processing or transmission systems
- Testing the robustness of computer vision models to ringing artifacts
- Creating artistic effects that emphasize edges and transitions in images
Mathematical Formulation: The 2D sinc filter kernel is defined as:
K(x, y) = cutoff * J₁(cutoff * √(x² + y²)) / (2π * √(x² + y²))
where:
- J₁ is the Bessel function of the first kind of order 1
- cutoff is the chosen cutoff frequency
- x and y are the distances from the kernel center
The filtered image I' is obtained by convolving the input image I with the kernel K:
I'(x, y) = ∑∑ I(x-u, y-v) * K(u, v)
The convolution operation introduces the ringing artifacts near sharp transitions.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
Apply ringing effect with default parameters¶
Apply ringing effect with custom parameters¶
>>> transform = A.RingingOvershoot(
... blur_limit=(9, 17),
... cutoff=(np.pi/6, np.pi/3),
... p=1.0
... )
>>> ringing_image = transform(image=image)['image']
References
- Ringing artifacts: https://en.wikipedia.org/wiki/Ringing_artifacts
- Sinc filter: https://en.wikipedia.org/wiki/Sinc_filter
- "The Importance of Ringing Artifacts in Image Processing" by Jae S. Lim, 1981
- "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods, 4th Edition
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class RingingOvershoot(ImageOnlyTransform):
"""Create ringing or overshoot artifacts by convolving the image with a 2D sinc filter.
This transform simulates the ringing artifacts that can occur in digital image processing,
particularly after sharpening or edge enhancement operations. It creates oscillations
or overshoots near sharp transitions in the image.
Args:
blur_limit (tuple[int, int] | int): Maximum kernel size for the sinc filter.
Must be an odd number in the range [3, inf).
If a single int is provided, the kernel size will be randomly chosen
from the range (3, blur_limit). If a tuple (min, max) is provided,
the kernel size will be randomly chosen from the range (min, max).
Default: (7, 15).
cutoff (tuple[float, float]): Range to choose the cutoff frequency in radians.
Values should be in the range (0, π). A lower cutoff frequency will
result in more pronounced ringing effects.
Default: (π/4, π/2).
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
Any
Note:
- Ringing artifacts are oscillations of the image intensity function in the neighborhood
of sharp transitions, such as edges or object boundaries.
- This transform uses a 2D sinc filter (also known as a 2D cardinal sine function)
to introduce these artifacts.
- The severity of the ringing effect is controlled by both the kernel size (blur_limit)
and the cutoff frequency.
- Larger kernel sizes and lower cutoff frequencies will generally produce more
noticeable ringing effects.
- This transform can be useful for:
* Simulating imperfections in image processing or transmission systems
* Testing the robustness of computer vision models to ringing artifacts
* Creating artistic effects that emphasize edges and transitions in images
Mathematical Formulation:
The 2D sinc filter kernel is defined as:
K(x, y) = cutoff * J₁(cutoff * √(x² + y²)) / (2π * √(x² + y²))
where:
- J₁ is the Bessel function of the first kind of order 1
- cutoff is the chosen cutoff frequency
- x and y are the distances from the kernel center
The filtered image I' is obtained by convolving the input image I with the kernel K:
I'(x, y) = ∑∑ I(x-u, y-v) * K(u, v)
The convolution operation introduces the ringing artifacts near sharp transitions.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
# Apply ringing effect with default parameters
>>> transform = A.RingingOvershoot(p=1.0)
>>> ringing_image = transform(image=image)['image']
# Apply ringing effect with custom parameters
>>> transform = A.RingingOvershoot(
... blur_limit=(9, 17),
... cutoff=(np.pi/6, np.pi/3),
... p=1.0
... )
>>> ringing_image = transform(image=image)['image']
References:
- Ringing artifacts: https://en.wikipedia.org/wiki/Ringing_artifacts
- Sinc filter: https://en.wikipedia.org/wiki/Sinc_filter
- "The Importance of Ringing Artifacts in Image Processing" by Jae S. Lim, 1981
- "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods, 4th Edition
"""
class InitSchema(BlurInitSchema):
blur_limit: ScaleIntType
cutoff: Annotated[tuple[float, float], nondecreasing]
@field_validator("cutoff")
@classmethod
def check_cutoff(
cls,
v: tuple[float, float],
info: ValidationInfo,
) -> tuple[float, float]:
bounds = 0, np.pi
check_range(v, *bounds, info.field_name)
return v
def __init__(
self,
blur_limit: ScaleIntType = (7, 15),
cutoff: tuple[float, float] = (np.pi / 4, np.pi / 2),
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.blur_limit = cast(tuple[int, int], blur_limit)
self.cutoff = cutoff
def get_params(self) -> dict[str, np.ndarray]:
ksize = self.py_random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2)
if ksize % 2 == 0:
raise ValueError(f"Kernel size must be odd. Got: {ksize}")
cutoff = self.py_random.uniform(*self.cutoff)
# From dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
with np.errstate(divide="ignore", invalid="ignore"):
kernel = np.fromfunction(
lambda x, y: cutoff
* special.j1(
cutoff * np.sqrt((x - (ksize - 1) / 2) ** 2 + (y - (ksize - 1) / 2) ** 2),
)
/ (2 * np.pi * np.sqrt((x - (ksize - 1) / 2) ** 2 + (y - (ksize - 1) / 2) ** 2)),
[ksize, ksize],
)
kernel[(ksize - 1) // 2, (ksize - 1) // 2] = cutoff**2 / (4 * np.pi)
# Normalize kernel
kernel = kernel.astype(np.float32) / np.sum(kernel)
return {"kernel": kernel}
def apply(self, img: np.ndarray, kernel: int, **params: Any) -> np.ndarray:
return fmain.convolve(img, kernel)
def get_transform_init_args_names(self) -> tuple[str, str]:
return ("blur_limit", "cutoff")
class SaltAndPepper
(amount=(0.01, 0.06), salt_vs_pepper=(0.4, 0.6), p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply salt and pepper noise to the input image.
Salt and pepper noise is a form of impulse noise that randomly sets pixels to either maximum value (salt) or minimum value (pepper). The amount and proportion of salt vs pepper noise can be controlled.
Parameters:
Name | Type | Description |
---|---|---|
amount | float, float | Range for total amount of noise (both salt and pepper). Values between 0 and 1. For example: - 0.05 means 5% of all pixels will be replaced with noise - (0.01, 0.06) will sample amount uniformly from 1% to 6% Default: (0.01, 0.06) |
salt_vs_pepper | float, float | Range for ratio of salt (white) vs pepper (black) noise. Values between 0 and 1. For example: - 0.5 means equal amounts of salt and pepper - 0.7 means 70% of noisy pixels will be salt, 30% pepper - (0.4, 0.6) will sample ratio uniformly from 40% to 60% Default: (0.4, 0.6) |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Note
- Salt noise sets pixels to maximum value (255 for uint8, 1.0 for float32)
- Pepper noise sets pixels to 0
- Salt and pepper masks are generated independently, so a pixel could theoretically be selected for both (in this case, pepper overrides salt)
- The actual number of affected pixels might slightly differ from the specified amount due to random sampling and potential overlap of salt and pepper masks
Mathematical Formulation: For an input image I, the output O is: O[x,y] = max_value, if salt_mask[x,y] = True O[x,y] = 0, if pepper_mask[x,y] = True O[x,y] = I[x,y], otherwise
where:
P(salt_mask[x,y] = True) = amount * salt_ratio
P(pepper_mask[x,y] = True) = amount * (1 - salt_ratio)
amount ∈ [amount_min, amount_max]
salt_ratio ∈ [salt_vs_pepper_min, salt_vs_pepper_max]
Examples:
Apply salt and pepper noise with default parameters¶
Heavy noise with more salt than pepper¶
>>> transform = A.SaltAndPepper(
... amount=(0.1, 0.2), # 10-20% of pixels will be noisy
... salt_vs_pepper=(0.7, 0.9), # 70-90% of noise will be salt
... p=1.0
... )
>>> noisy_image = transform(image=image)["image"]
References
.. [1] R. C. Gonzalez and R. E. Woods, "Digital Image Processing (4th Edition)," Chapter 5: Image Restoration and Reconstruction.
.. [2] A. K. Jain, "Fundamentals of Digital Image Processing," Chapter 7: Image Degradation and Restoration.
.. [3] Salt and pepper noise: https://en.wikipedia.org/wiki/Salt-and-pepper_noise
See Also: - GaussNoise: For additive Gaussian noise - MultiplicativeNoise: For multiplicative noise - ISONoise: For camera sensor noise simulation
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class SaltAndPepper(ImageOnlyTransform):
"""Apply salt and pepper noise to the input image.
Salt and pepper noise is a form of impulse noise that randomly sets pixels to either maximum value (salt)
or minimum value (pepper). The amount and proportion of salt vs pepper noise can be controlled.
Args:
amount ((float, float)): Range for total amount of noise (both salt and pepper).
Values between 0 and 1. For example:
- 0.05 means 5% of all pixels will be replaced with noise
- (0.01, 0.06) will sample amount uniformly from 1% to 6%
Default: (0.01, 0.06)
salt_vs_pepper ((float, float)): Range for ratio of salt (white) vs pepper (black) noise.
Values between 0 and 1. For example:
- 0.5 means equal amounts of salt and pepper
- 0.7 means 70% of noisy pixels will be salt, 30% pepper
- (0.4, 0.6) will sample ratio uniformly from 40% to 60%
Default: (0.4, 0.6)
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Note:
- Salt noise sets pixels to maximum value (255 for uint8, 1.0 for float32)
- Pepper noise sets pixels to 0
- Salt and pepper masks are generated independently, so a pixel could theoretically
be selected for both (in this case, pepper overrides salt)
- The actual number of affected pixels might slightly differ from the specified amount
due to random sampling and potential overlap of salt and pepper masks
Mathematical Formulation:
For an input image I, the output O is:
O[x,y] = max_value, if salt_mask[x,y] = True
O[x,y] = 0, if pepper_mask[x,y] = True
O[x,y] = I[x,y], otherwise
where:
P(salt_mask[x,y] = True) = amount * salt_ratio
P(pepper_mask[x,y] = True) = amount * (1 - salt_ratio)
amount ∈ [amount_min, amount_max]
salt_ratio ∈ [salt_vs_pepper_min, salt_vs_pepper_max]
Examples:
>>> import albumentations as A
>>> import numpy as np
# Apply salt and pepper noise with default parameters
>>> transform = A.SaltAndPepper(p=1.0)
>>> noisy_image = transform(image=image)["image"]
# Heavy noise with more salt than pepper
>>> transform = A.SaltAndPepper(
... amount=(0.1, 0.2), # 10-20% of pixels will be noisy
... salt_vs_pepper=(0.7, 0.9), # 70-90% of noise will be salt
... p=1.0
... )
>>> noisy_image = transform(image=image)["image"]
References:
.. [1] R. C. Gonzalez and R. E. Woods, "Digital Image Processing (4th Edition),"
Chapter 5: Image Restoration and Reconstruction.
.. [2] A. K. Jain, "Fundamentals of Digital Image Processing,"
Chapter 7: Image Degradation and Restoration.
.. [3] Salt and pepper noise:
https://en.wikipedia.org/wiki/Salt-and-pepper_noise
See Also:
- GaussNoise: For additive Gaussian noise
- MultiplicativeNoise: For multiplicative noise
- ISONoise: For camera sensor noise simulation
"""
class InitSchema(BaseTransformInitSchema):
amount: Annotated[tuple[float, float], AfterValidator(check_range_bounds(0, 1))]
salt_vs_pepper: Annotated[tuple[float, float], AfterValidator(check_range_bounds(0, 1))]
def __init__(
self,
amount: tuple[float, float] = (0.01, 0.06),
salt_vs_pepper: tuple[float, float] = (0.4, 0.6),
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.amount = amount
self.salt_vs_pepper = salt_vs_pepper
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
image = data["image"] if "image" in data else data["images"][0]
# Sample total amount and salt ratio
total_amount = self.py_random.uniform(*self.amount)
salt_ratio = self.py_random.uniform(*self.salt_vs_pepper)
# Calculate individual probabilities
prob_salt = total_amount * salt_ratio
prob_pepper = total_amount * (1 - salt_ratio)
# Generate masks
salt_mask = self.random_generator.random(image.shape) < prob_salt
pepper_mask = self.random_generator.random(image.shape) < prob_pepper
return {
"salt_mask": salt_mask,
"pepper_mask": pepper_mask,
}
def apply(
self,
img: np.ndarray,
salt_mask: np.ndarray,
pepper_mask: np.ndarray,
**params: Any,
) -> np.ndarray:
return fmain.apply_salt_and_pepper(img, salt_mask, pepper_mask)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "amount", "salt_vs_pepper"
class Sharpen
(alpha=(0.2, 0.5), lightness=(0.5, 1.0), method='kernel', kernel_size=5, sigma=1.0, p=0.5, always_apply=None)
[view source on GitHub] ¶
Sharpen the input image using either kernel-based or Gaussian interpolation method.
Implements two different approaches to image sharpening: 1. Traditional kernel-based method using Laplacian operator 2. Gaussian interpolation method (similar to Kornia's approach)
Parameters:
Name | Type | Description |
---|---|---|
alpha | tuple[float, float] | Range for the visibility of sharpening effect. At 0, only the original image is visible, at 1.0 only its processed version is visible. Values should be in the range [0, 1]. Used in both methods. Default: (0.2, 0.5). |
lightness | tuple[float, float] | Range for the lightness of the sharpened image. Only used in 'kernel' method. Larger values create higher contrast. Values should be greater than 0. Default: (0.5, 1.0). |
method | Literal['kernel', 'gaussian'] | Sharpening algorithm to use: - 'kernel': Traditional kernel-based sharpening using Laplacian operator - 'gaussian': Interpolation between Gaussian blurred and original image Default: 'kernel' |
kernel_size | int | Size of the Gaussian blur kernel for 'gaussian' method. Must be odd. Default: 5 |
sigma | float | Standard deviation for Gaussian kernel in 'gaussian' method. Default: 1.0 |
p | float | Probability of applying the transform. Default: 0.5. |
Image types: uint8, float32
Number of channels: Any
Mathematical Formulation: 1. Kernel Method: The sharpening operation is based on the Laplacian operator L: L = [[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]
The final kernel K is a weighted sum:
K = (1 - a)I + a(L + λI)
where:
- a is the alpha value
- λ is the lightness value
- I is the identity kernel
The output image O is computed as:
O = K * I (convolution)
2. Gaussian Method:
Based on the unsharp mask principle:
O = aI + (1-a)G
where:
- I is the input image
- G is the Gaussian blurred version of I
- a is the alpha value (sharpness)
The Gaussian kernel G(x,y) is defined as:
G(x,y) = (1/(2πs²))exp(-(x²+y²)/(2s²))
Note
- Kernel sizes must be odd to maintain spatial alignment
- Methods produce different visual results:
- Kernel method: More pronounced edges, possible artifacts
- Gaussian method: More natural look, limited to original sharpness
Examples:
Traditional kernel sharpening¶
>>> transform = A.Sharpen(
... alpha=(0.2, 0.5),
... lightness=(0.5, 1.0),
... method='kernel',
... p=1.0
... )
Gaussian interpolation sharpening¶
>>> transform = A.Sharpen(
... alpha=(0.5, 1.0),
... method='gaussian',
... kernel_size=5,
... sigma=1.0,
... p=1.0
... )
References
.. [1] R. C. Gonzalez and R. E. Woods, "Digital Image Processing (4th Edition)," Chapter 3: Intensity Transformations and Spatial Filtering.
.. [2] J. C. Russ, "The Image Processing Handbook (7th Edition)," Chapter 4: Image Enhancement.
.. [3] T. Acharya and A. K. Ray, "Image Processing: Principles and Applications," Chapter 5: Image Enhancement.
.. [4] Unsharp masking: https://en.wikipedia.org/wiki/Unsharp_masking
.. [5] Laplacian operator: https://en.wikipedia.org/wiki/Laplace_operator
.. [6] Gaussian blur: https://en.wikipedia.org/wiki/Gaussian_blur
See Also: - Blur: For Gaussian blurring - UnsharpMask: Alternative sharpening method - RandomBrightnessContrast: For adjusting image contrast
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Sharpen(ImageOnlyTransform):
"""Sharpen the input image using either kernel-based or Gaussian interpolation method.
Implements two different approaches to image sharpening:
1. Traditional kernel-based method using Laplacian operator
2. Gaussian interpolation method (similar to Kornia's approach)
Args:
alpha (tuple[float, float]): Range for the visibility of sharpening effect.
At 0, only the original image is visible, at 1.0 only its processed version is visible.
Values should be in the range [0, 1].
Used in both methods. Default: (0.2, 0.5).
lightness (tuple[float, float]): Range for the lightness of the sharpened image.
Only used in 'kernel' method. Larger values create higher contrast.
Values should be greater than 0. Default: (0.5, 1.0).
method (Literal['kernel', 'gaussian']): Sharpening algorithm to use:
- 'kernel': Traditional kernel-based sharpening using Laplacian operator
- 'gaussian': Interpolation between Gaussian blurred and original image
Default: 'kernel'
kernel_size (int): Size of the Gaussian blur kernel for 'gaussian' method.
Must be odd. Default: 5
sigma (float): Standard deviation for Gaussian kernel in 'gaussian' method.
Default: 1.0
p (float): Probability of applying the transform. Default: 0.5.
Image types:
uint8, float32
Number of channels:
Any
Mathematical Formulation:
1. Kernel Method:
The sharpening operation is based on the Laplacian operator L:
L = [[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]]
The final kernel K is a weighted sum:
K = (1 - a)I + a(L + λI)
where:
- a is the alpha value
- λ is the lightness value
- I is the identity kernel
The output image O is computed as:
O = K * I (convolution)
2. Gaussian Method:
Based on the unsharp mask principle:
O = aI + (1-a)G
where:
- I is the input image
- G is the Gaussian blurred version of I
- a is the alpha value (sharpness)
The Gaussian kernel G(x,y) is defined as:
G(x,y) = (1/(2πs²))exp(-(x²+y²)/(2s²))
Note:
- Kernel sizes must be odd to maintain spatial alignment
- Methods produce different visual results:
* Kernel method: More pronounced edges, possible artifacts
* Gaussian method: More natural look, limited to original sharpness
Examples:
>>> import albumentations as A
>>> import numpy as np
# Traditional kernel sharpening
>>> transform = A.Sharpen(
... alpha=(0.2, 0.5),
... lightness=(0.5, 1.0),
... method='kernel',
... p=1.0
... )
# Gaussian interpolation sharpening
>>> transform = A.Sharpen(
... alpha=(0.5, 1.0),
... method='gaussian',
... kernel_size=5,
... sigma=1.0,
... p=1.0
... )
References:
.. [1] R. C. Gonzalez and R. E. Woods, "Digital Image Processing (4th Edition),"
Chapter 3: Intensity Transformations and Spatial Filtering.
.. [2] J. C. Russ, "The Image Processing Handbook (7th Edition),"
Chapter 4: Image Enhancement.
.. [3] T. Acharya and A. K. Ray, "Image Processing: Principles and Applications,"
Chapter 5: Image Enhancement.
.. [4] Unsharp masking:
https://en.wikipedia.org/wiki/Unsharp_masking
.. [5] Laplacian operator:
https://en.wikipedia.org/wiki/Laplace_operator
.. [6] Gaussian blur:
https://en.wikipedia.org/wiki/Gaussian_blur
See Also:
- Blur: For Gaussian blurring
- UnsharpMask: Alternative sharpening method
- RandomBrightnessContrast: For adjusting image contrast
"""
class InitSchema(BaseTransformInitSchema):
alpha: Annotated[tuple[float, float], AfterValidator(check_range_bounds(0, 1))]
lightness: Annotated[tuple[float, float], AfterValidator(check_range_bounds(0, None))]
method: Literal["kernel", "gaussian"]
kernel_size: int = Field(ge=3)
sigma: float = Field(gt=0)
@field_validator("kernel_size")
@classmethod
def check_kernel_size(cls, value: int) -> int:
return value + 1 if value % 2 == 0 else value
def __init__(
self,
alpha: tuple[float, float] = (0.2, 0.5),
lightness: tuple[float, float] = (0.5, 1.0),
method: Literal["kernel", "gaussian"] = "kernel",
kernel_size: int = 5,
sigma: float = 1.0,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.alpha = alpha
self.lightness = lightness
self.method = method
self.kernel_size = kernel_size
self.sigma = sigma
@staticmethod
def __generate_sharpening_matrix(
alpha: np.ndarray,
lightness: np.ndarray,
) -> np.ndarray:
matrix_nochange = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32)
matrix_effect = np.array(
[[-1, -1, -1], [-1, 8 + lightness, -1], [-1, -1, -1]],
dtype=np.float32,
)
return (1 - alpha) * matrix_nochange + alpha * matrix_effect
def get_params(self) -> dict[str, Any]:
alpha = self.py_random.uniform(*self.alpha)
if self.method == "kernel":
lightness = self.py_random.uniform(*self.lightness)
return {
"alpha": alpha,
"sharpening_matrix": self.__generate_sharpening_matrix(
alpha,
lightness,
),
}
return {"alpha": alpha, "sharpening_matrix": None}
def apply(
self,
img: np.ndarray,
alpha: float,
sharpening_matrix: np.ndarray | None,
**params: Any,
) -> np.ndarray:
if self.method == "kernel":
return fmain.convolve(img, sharpening_matrix)
return fmain.sharpen_gaussian(img, alpha, self.kernel_size, self.sigma)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "alpha", "lightness", "method", "kernel_size", "sigma"
class ShotNoise
(scale_range=(0.1, 0.3), p=0.5, always_apply=False)
[view source on GitHub] ¶
Apply shot noise to the image by modeling photon counting as a Poisson process.
Shot noise (also known as Poisson noise) occurs in imaging due to the quantum nature of light. When photons hit an imaging sensor, they arrive at random times following Poisson statistics. This transform simulates this physical process in linear light space by: 1. Converting to linear space (removing gamma) 2. Treating each pixel value as an expected photon count 3. Sampling actual photon counts from a Poisson distribution 4. Converting back to display space (reapplying gamma)
The noise characteristics follow real camera behavior: - Noise variance equals signal mean in linear space (Poisson statistics) - Brighter regions have more absolute noise but less relative noise - Darker regions have less absolute noise but more relative noise - Noise is generated independently for each pixel and color channel
Parameters:
Name | Type | Description |
---|---|---|
scale_range | tuple[float, float] | Range for sampling the noise scale factor. Represents the reciprocal of the expected photon count per unit intensity. Higher values mean more noise: - scale = 0.1: ~100 photons per unit intensity (low noise) - scale = 1.0: ~1 photon per unit intensity (moderate noise) - scale = 10.0: ~0.1 photons per unit intensity (high noise) Default: (0.1, 0.3) |
p | float | Probability of applying the transform. Default: 0.5 |
Targets
image
Image types: uint8, float32
Note
- Performs calculations in linear light space (gamma = 2.2)
- Preserves the image's mean intensity
- Memory efficient with in-place operations
- Thread-safe with independent random seeds
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> # Generate synthetic image
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> # Apply moderate shot noise
>>> transform = A.ShotNoise(scale_range=(0.1, 1.0), p=1.0)
>>> noisy_image = transform(image=image)["image"]
References
- Shot noise: https://en.wikipedia.org/wiki/Shot_noise
- Original paper: https://doi.org/10.1002/andp.19183622304 (Schottky, 1918)
- Poisson process: https://en.wikipedia.org/wiki/Poisson_point_process
- Gamma correction: https://en.wikipedia.org/wiki/Gamma_correction
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ShotNoise(ImageOnlyTransform):
"""Apply shot noise to the image by modeling photon counting as a Poisson process.
Shot noise (also known as Poisson noise) occurs in imaging due to the quantum nature of light.
When photons hit an imaging sensor, they arrive at random times following Poisson statistics.
This transform simulates this physical process in linear light space by:
1. Converting to linear space (removing gamma)
2. Treating each pixel value as an expected photon count
3. Sampling actual photon counts from a Poisson distribution
4. Converting back to display space (reapplying gamma)
The noise characteristics follow real camera behavior:
- Noise variance equals signal mean in linear space (Poisson statistics)
- Brighter regions have more absolute noise but less relative noise
- Darker regions have less absolute noise but more relative noise
- Noise is generated independently for each pixel and color channel
Args:
scale_range (tuple[float, float]): Range for sampling the noise scale factor.
Represents the reciprocal of the expected photon count per unit intensity.
Higher values mean more noise:
- scale = 0.1: ~100 photons per unit intensity (low noise)
- scale = 1.0: ~1 photon per unit intensity (moderate noise)
- scale = 10.0: ~0.1 photons per unit intensity (high noise)
Default: (0.1, 0.3)
p (float): Probability of applying the transform. Default: 0.5
Targets:
image
Image types:
uint8, float32
Note:
- Performs calculations in linear light space (gamma = 2.2)
- Preserves the image's mean intensity
- Memory efficient with in-place operations
- Thread-safe with independent random seeds
Example:
>>> import numpy as np
>>> import albumentations as A
>>> # Generate synthetic image
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> # Apply moderate shot noise
>>> transform = A.ShotNoise(scale_range=(0.1, 1.0), p=1.0)
>>> noisy_image = transform(image=image)["image"]
References:
- Shot noise: https://en.wikipedia.org/wiki/Shot_noise
- Original paper: https://doi.org/10.1002/andp.19183622304 (Schottky, 1918)
- Poisson process: https://en.wikipedia.org/wiki/Poisson_point_process
- Gamma correction: https://en.wikipedia.org/wiki/Gamma_correction
"""
class InitSchema(BaseTransformInitSchema):
scale_range: Annotated[
tuple[float, float],
AfterValidator(nondecreasing),
AfterValidator(check_range_bounds(0, None)),
]
def __init__(
self,
scale_range: tuple[float, float] = (0.1, 0.3),
p: float = 0.5,
always_apply: bool = False,
):
super().__init__(p=p, always_apply=always_apply)
self.scale_range = scale_range
def apply(
self,
img: np.ndarray,
scale: float,
random_seed: int,
**params: Any,
) -> np.ndarray:
return fmain.shot_noise(img, scale, np.random.default_rng(random_seed))
def get_params(self) -> dict[str, Any]:
return {
"scale": self.py_random.uniform(*self.scale_range),
"random_seed": self.random_generator.integers(0, 2**32 - 1),
}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return ("scale_range",)
class Solarize
(threshold=None, threshold_range=(0.5, 0.5), p=0.5, always_apply=None)
[view source on GitHub] ¶
Invert all pixel values above a threshold.
This transform applies a solarization effect to the input image. Solarization is a phenomenon in photography in which the image recorded on a negative or on a photographic print is wholly or partially reversed in tone. Dark areas appear light or light areas appear dark.
In this implementation, all pixel values above a threshold are inverted.
Parameters:
Name | Type | Description |
---|---|---|
threshold_range | tuple[float, float] | Range for solarizing threshold as a fraction of maximum value. The threshold_range should be in the range [0, 1] and will be multiplied by the maximum value of the image type (255 for uint8 images or 1.0 for float images). Default: (0.5, 0.5) (corresponds to 127.5 for uint8 and 0.5 for float32). |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: Any
Note
- For uint8 images, pixel values above the threshold are inverted as: 255 - pixel_value
- For float32 images, pixel values above the threshold are inverted as: 1.0 - pixel_value
- The threshold is applied to each channel independently
- The threshold is calculated in two steps:
- Sample a value from threshold_range
- Multiply by the image's maximum value:
- For uint8: threshold = sampled_value * 255
- For float32: threshold = sampled_value * 1.0
- This transform can create interesting artistic effects or be used for data augmentation
Examples:
>>> import numpy as np
>>> import albumentations as A
>>>
# Solarize uint8 image with fixed threshold at 50% of max value (127.5)
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.Solarize(threshold_range=(0.5, 0.5), p=1.0)
>>> solarized_image = transform(image=image)['image']
>>>
# Solarize uint8 image with random threshold between 40-60% of max value (102-153)
>>> transform = A.Solarize(threshold_range=(0.4, 0.6), p=1.0)
>>> solarized_image = transform(image=image)['image']
>>>
# Solarize float32 image at 50% of max value (0.5)
>>> image = np.random.rand(100, 100, 3).astype(np.float32)
>>> transform = A.Solarize(threshold_range=(0.5, 0.5), p=1.0)
>>> solarized_image = transform(image=image)['image']
Mathematical Formulation: Let f be a value sampled from threshold_range (min, max). For each pixel value p: threshold = f * max_value if p > threshold: p_new = max_value - p !!! else p_new = p
Where max_value is 255 for uint8 images and 1.0 for float32 images.
See Also: Invert: For inverting all pixel values regardless of a threshold.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Solarize(ImageOnlyTransform):
"""Invert all pixel values above a threshold.
This transform applies a solarization effect to the input image. Solarization is a phenomenon in
photography in which the image recorded on a negative or on a photographic print is wholly or
partially reversed in tone. Dark areas appear light or light areas appear dark.
In this implementation, all pixel values above a threshold are inverted.
Args:
threshold_range (tuple[float, float]): Range for solarizing threshold as a fraction
of maximum value. The threshold_range should be in the range [0, 1] and will be multiplied by the
maximum value of the image type (255 for uint8 images or 1.0 for float images).
Default: (0.5, 0.5) (corresponds to 127.5 for uint8 and 0.5 for float32).
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
Any
Note:
- For uint8 images, pixel values above the threshold are inverted as: 255 - pixel_value
- For float32 images, pixel values above the threshold are inverted as: 1.0 - pixel_value
- The threshold is applied to each channel independently
- The threshold is calculated in two steps:
1. Sample a value from threshold_range
2. Multiply by the image's maximum value:
* For uint8: threshold = sampled_value * 255
* For float32: threshold = sampled_value * 1.0
- This transform can create interesting artistic effects or be used for data augmentation
Examples:
>>> import numpy as np
>>> import albumentations as A
>>>
# Solarize uint8 image with fixed threshold at 50% of max value (127.5)
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.Solarize(threshold_range=(0.5, 0.5), p=1.0)
>>> solarized_image = transform(image=image)['image']
>>>
# Solarize uint8 image with random threshold between 40-60% of max value (102-153)
>>> transform = A.Solarize(threshold_range=(0.4, 0.6), p=1.0)
>>> solarized_image = transform(image=image)['image']
>>>
# Solarize float32 image at 50% of max value (0.5)
>>> image = np.random.rand(100, 100, 3).astype(np.float32)
>>> transform = A.Solarize(threshold_range=(0.5, 0.5), p=1.0)
>>> solarized_image = transform(image=image)['image']
Mathematical Formulation:
Let f be a value sampled from threshold_range (min, max).
For each pixel value p:
threshold = f * max_value
if p > threshold:
p_new = max_value - p
else:
p_new = p
Where max_value is 255 for uint8 images and 1.0 for float32 images.
See Also:
Invert: For inverting all pixel values regardless of a threshold.
"""
class InitSchema(BaseTransformInitSchema):
threshold: ScaleFloatType | None
threshold_range: Annotated[
tuple[float, float],
AfterValidator(check_range_bounds(0, 1)),
AfterValidator(nondecreasing),
]
@staticmethod
def normalize_threshold(
threshold: ScaleFloatType | None,
threshold_range: tuple[float, float],
) -> tuple[float, float]:
"""Convert legacy threshold or use threshold_range, normalizing to [0,1] range."""
if threshold is not None:
warn("`threshold` deprecated. Use `threshold_range` instead.", DeprecationWarning, stacklevel=2)
value = to_tuple(threshold, threshold)
return (value[0] / 255, value[1] / 255) if value[1] > 1 else value
return threshold_range
@model_validator(mode="after")
def process_threshold(self) -> Self:
self.threshold_range = self.normalize_threshold(
self.threshold,
self.threshold_range,
)
return self
def __init__(
self,
threshold: ScaleFloatType | None = None,
threshold_range: tuple[float, float] = (0.5, 0.5),
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.threshold_range = threshold_range
def apply(self, img: np.ndarray, threshold: float, **params: Any) -> np.ndarray:
return fmain.solarize(img, threshold)
def get_params(self) -> dict[str, float]:
return {"threshold": self.py_random.uniform(*self.threshold_range)}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return ("threshold_range",)
class Spatter
(mean=(0.65, 0.65), std=(0.3, 0.3), gauss_sigma=(2, 2), cutout_threshold=(0.68, 0.68), intensity=(0.6, 0.6), mode='rain', color=None, p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply spatter transform. It simulates corruption which can occlude a lens in the form of rain or mud.
Parameters:
Name | Type | Description |
---|---|---|
mean | tuple[float, float] | float | Mean value of normal distribution for generating liquid layer. If single float mean will be sampled from |
std | tuple[float, float] | float | Standard deviation value of normal distribution for generating liquid layer. If single float the number will be sampled from |
gauss_sigma | tuple[float, float] | floats | Sigma value for gaussian filtering of liquid layer. If single float the number will be sampled from |
cutout_threshold | tuple[float, float] | floats | Threshold for filtering liqued layer (determines number of drops). If single float it will used as cutout_threshold. If single float the number will be sampled from |
intensity | tuple[float, float] | floats | Intensity of corruption. If single float the number will be sampled from |
mode | str, or list[str] | Type of corruption. Currently, supported options are 'rain' and 'mud'. If list is provided type of corruption will be sampled list. Default: ("rain"). |
color | list of (r, g, b) or dict or None | Corruption elements color. If list uses provided list as color for specified mode. If dict uses provided color for specified mode. Color for each specified mode should be provided in dict. If None uses default colors (rain: (238, 238, 175), mud: (20, 42, 63)). |
p | float | probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Reference
https://arxiv.org/abs/1903.12261 https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Spatter(ImageOnlyTransform):
"""Apply spatter transform. It simulates corruption which can occlude a lens in the form of rain or mud.
Args:
mean (tuple[float, float] | float): Mean value of normal distribution for generating liquid layer.
If single float mean will be sampled from `(0, mean)`
If tuple of float mean will be sampled from range `(mean[0], mean[1])`.
If you want constant value use (mean, mean).
Default (0.65, 0.65)
std (tuple[float, float] | float): Standard deviation value of normal distribution for generating liquid layer.
If single float the number will be sampled from `(0, std)`.
If tuple of float std will be sampled from range `(std[0], std[1])`.
If you want constant value use (std, std).
Default: (0.3, 0.3).
gauss_sigma (tuple[float, float] | floats): Sigma value for gaussian filtering of liquid layer.
If single float the number will be sampled from `(0, gauss_sigma)`.
If tuple of float gauss_sigma will be sampled from range `(gauss_sigma[0], gauss_sigma[1])`.
If you want constant value use (gauss_sigma, gauss_sigma).
Default: (2, 3).
cutout_threshold (tuple[float, float] | floats): Threshold for filtering liqued layer
(determines number of drops). If single float it will used as cutout_threshold.
If single float the number will be sampled from `(0, cutout_threshold)`.
If tuple of float cutout_threshold will be sampled from range `(cutout_threshold[0], cutout_threshold[1])`.
If you want constant value use `(cutout_threshold, cutout_threshold)`.
Default: (0.68, 0.68).
intensity (tuple[float, float] | floats): Intensity of corruption.
If single float the number will be sampled from `(0, intensity)`.
If tuple of float intensity will be sampled from range `(intensity[0], intensity[1])`.
If you want constant value use `(intensity, intensity)`.
Default: (0.6, 0.6).
mode (str, or list[str]): Type of corruption. Currently, supported options are 'rain' and 'mud'.
If list is provided type of corruption will be sampled list. Default: ("rain").
color (list of (r, g, b) or dict or None): Corruption elements color.
If list uses provided list as color for specified mode.
If dict uses provided color for specified mode. Color for each specified mode should be provided in dict.
If None uses default colors (rain: (238, 238, 175), mud: (20, 42, 63)).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Reference:
https://arxiv.org/abs/1903.12261
https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py
"""
class InitSchema(BaseTransformInitSchema):
mean: ZeroOneRangeType = (0.65, 0.65)
std: ZeroOneRangeType = (0.3, 0.3)
gauss_sigma: NonNegativeFloatRangeType = (2, 2)
cutout_threshold: ZeroOneRangeType = (0.68, 0.68)
intensity: ZeroOneRangeType = (0.6, 0.6)
mode: SpatterMode | Sequence[SpatterMode]
color: Sequence[int] | dict[str, Sequence[int]] | None = None
@field_validator("mode")
@classmethod
def check_mode(
cls,
mode: SpatterMode | Sequence[SpatterMode],
) -> Sequence[SpatterMode]:
if isinstance(mode, str):
return [mode]
return mode
@model_validator(mode="after")
def check_color(self) -> Self:
if self.color is None:
self.color = {"rain": [238, 238, 175], "mud": [20, 42, 63]}
elif isinstance(self.color, (list, tuple)) and len(self.mode) == 1:
if len(self.color) != NUM_RGB_CHANNELS:
msg = "Color must be a list of three integers for RGB format."
raise ValueError(msg)
self.color = {self.mode[0]: self.color}
elif isinstance(self.color, dict):
result = {}
for mode in self.mode:
if mode not in self.color:
raise ValueError(f"Color for mode {mode} is not specified.")
if len(self.color[mode]) != NUM_RGB_CHANNELS:
raise ValueError(
f"Color for mode {mode} must be in RGB format.",
)
result[mode] = self.color[mode]
else:
msg = "Color must be a list of RGB values or a dict mapping mode to RGB values."
raise ValueError(msg)
return self
def __init__(
self,
mean: ScaleFloatType = (0.65, 0.65),
std: ScaleFloatType = (0.3, 0.3),
gauss_sigma: ScaleFloatType = (2, 2),
cutout_threshold: ScaleFloatType = (0.68, 0.68),
intensity: ScaleFloatType = (0.6, 0.6),
mode: SpatterMode | Sequence[SpatterMode] = "rain",
color: Sequence[int] | dict[str, Sequence[int]] | None = None,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.mean = cast(tuple[float, float], mean)
self.std = cast(tuple[float, float], std)
self.gauss_sigma = cast(tuple[float, float], gauss_sigma)
self.cutout_threshold = cast(tuple[float, float], cutout_threshold)
self.intensity = cast(tuple[float, float], intensity)
self.mode = mode
self.color = cast(dict[str, Sequence[int]], color)
def apply(
self,
img: np.ndarray,
non_mud: np.ndarray,
mud: np.ndarray,
drops: np.ndarray,
mode: SpatterMode,
**params: dict[str, Any],
) -> np.ndarray:
non_rgb_error(img)
return fmain.spatter(img, non_mud, mud, drops, mode)
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
height, width = params["shape"][:2]
mean = self.py_random.uniform(*self.mean)
std = self.py_random.uniform(*self.std)
cutout_threshold = self.py_random.uniform(*self.cutout_threshold)
sigma = self.py_random.uniform(*self.gauss_sigma)
mode = self.py_random.choice(self.mode)
intensity = self.py_random.uniform(*self.intensity)
color = np.array(self.color[mode]) / 255.0
liquid_layer = self.random_generator.normal(
size=(height, width),
loc=mean,
scale=std,
)
liquid_layer = gaussian_filter(liquid_layer, sigma=sigma, mode="nearest")
liquid_layer[liquid_layer < cutout_threshold] = 0
if mode == "rain":
liquid_layer = clip(liquid_layer * 255, np.uint8, inplace=False)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = clip(fblur.blur(dist, 3), np.uint8, inplace=True)
dist = fmain.equalize(dist)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = fmain.convolve(dist, ker)
dist = fblur.blur(dist, 3).astype(np.float32)
m = liquid_layer * dist
m *= 1 / np.max(m, axis=(0, 1))
drops = m[:, :, None] * color * intensity
mud = None
non_mud = None
else:
m = np.where(liquid_layer > cutout_threshold, 1, 0)
m = gaussian_filter(m.astype(np.float32), sigma=sigma, mode="nearest")
m[m < 1.2 * cutout_threshold] = 0
m = m[..., np.newaxis]
mud = m * color
non_mud = 1 - m
drops = None
return {
"non_mud": non_mud,
"mud": mud,
"drops": drops,
"mode": mode,
}
def get_transform_init_args_names(self) -> tuple[str, str, str, str, str, str, str]:
return (
"mean",
"std",
"gauss_sigma",
"intensity",
"cutout_threshold",
"mode",
"color",
)
class Superpixels
(p_replace=(0, 0.1), n_segments=(100, 100), max_size=128, interpolation=1, p=0.5, always_apply=None)
[view source on GitHub] ¶
Transform images partially/completely to their superpixel representation.
Parameters:
Name | Type | Description |
---|---|---|
p_replace | tuple[float, float] | float | Defines for any segment the probability that the pixels within that segment are replaced by their average color (otherwise, the pixels are not changed).
Behavior based on chosen data types for this parameter: * If a |
n_segments | tuple[int, int] | int | Rough target number of how many superpixels to generate. The algorithm may deviate from this number. Lower value will lead to coarser superpixels. Higher values are computationally more intensive and will hence lead to a slowdown. If tuple |
max_size | int | None | Maximum image size at which the augmentation is performed. If the width or height of an image exceeds this value, it will be downscaled before the augmentation so that the longest side matches |
interpolation | OpenCV flag | Flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR. |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Number of channels: Any
Note
- This transform can significantly change the visual appearance of the image.
- The transform makes use of a superpixel algorithm, which tends to be slow. If performance is a concern, consider using
max_size
to limit the image size. - The effect of this transform can vary greatly depending on the
p_replace
andn_segments
parameters. - When
p_replace
is high, the image can become highly abstracted, resembling a voronoi diagram. - The transform preserves the original image type (uint8 or float32).
Mathematical Formulation: 1. The image is segmented into approximately n_segments
superpixels using the SLIC algorithm. 2. For each superpixel: - With probability p_replace
, all pixels in the superpixel are replaced with their mean color. - With probability 1 - p_replace
, the superpixel is left unchanged. 3. If the image was resized due to max_size
, it is resized back to its original dimensions.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
Apply superpixels with default parameters¶
Apply superpixels with custom parameters¶
>>> transform = A.Superpixels(
... p_replace=(0.5, 0.7),
... n_segments=(50, 100),
... max_size=None,
... interpolation=cv2.INTER_NEAREST,
... p=1.0
... )
>>> augmented_image = transform(image=image)['image']
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class Superpixels(ImageOnlyTransform):
"""Transform images partially/completely to their superpixel representation.
Args:
p_replace (tuple[float, float] | float): Defines for any segment the probability that the pixels within that
segment are replaced by their average color (otherwise, the pixels are not changed).
* A probability of ``0.0`` would mean, that the pixels in no
segment are replaced by their average color (image is not
changed at all).
* A probability of ``0.5`` would mean, that around half of all
segments are replaced by their average color.
* A probability of ``1.0`` would mean, that all segments are
replaced by their average color (resulting in a voronoi
image).
Behavior based on chosen data types for this parameter:
* If a ``float``, then that ``float`` will always be used.
* If ``tuple`` ``(a, b)``, then a random probability will be
sampled from the interval ``[a, b]`` per image.
Default: (0.1, 0.3)
n_segments (tuple[int, int] | int): Rough target number of how many superpixels to generate.
The algorithm may deviate from this number.
Lower value will lead to coarser superpixels.
Higher values are computationally more intensive and will hence lead to a slowdown.
If tuple ``(a, b)``, then a value from the discrete interval ``[a..b]`` will be sampled per image.
Default: (15, 120)
max_size (int | None): Maximum image size at which the augmentation is performed.
If the width or height of an image exceeds this value, it will be
downscaled before the augmentation so that the longest side matches `max_size`.
This is done to speed up the process. The final output image has the same size as the input image.
Note that in case `p_replace` is below ``1.0``,
the down-/upscaling will affect the not-replaced pixels too.
Use ``None`` to apply no down-/upscaling.
Default: 128
interpolation (OpenCV flag): Flag that is used to specify the interpolation algorithm. Should be one of:
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
Default: cv2.INTER_LINEAR.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
Any
Note:
- This transform can significantly change the visual appearance of the image.
- The transform makes use of a superpixel algorithm, which tends to be slow.
If performance is a concern, consider using `max_size` to limit the image size.
- The effect of this transform can vary greatly depending on the `p_replace` and `n_segments` parameters.
- When `p_replace` is high, the image can become highly abstracted, resembling a voronoi diagram.
- The transform preserves the original image type (uint8 or float32).
Mathematical Formulation:
1. The image is segmented into approximately `n_segments` superpixels using the SLIC algorithm.
2. For each superpixel:
- With probability `p_replace`, all pixels in the superpixel are replaced with their mean color.
- With probability `1 - p_replace`, the superpixel is left unchanged.
3. If the image was resized due to `max_size`, it is resized back to its original dimensions.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
# Apply superpixels with default parameters
>>> transform = A.Superpixels(p=1.0)
>>> augmented_image = transform(image=image)['image']
# Apply superpixels with custom parameters
>>> transform = A.Superpixels(
... p_replace=(0.5, 0.7),
... n_segments=(50, 100),
... max_size=None,
... interpolation=cv2.INTER_NEAREST,
... p=1.0
... )
>>> augmented_image = transform(image=image)['image']
"""
class InitSchema(BaseTransformInitSchema):
p_replace: ZeroOneRangeType
n_segments: OnePlusIntRangeType
max_size: int | None = Field(ge=1)
interpolation: InterpolationType
def __init__(
self,
p_replace: ScaleFloatType = (0, 0.1),
n_segments: ScaleIntType = (100, 100),
max_size: int | None = 128,
interpolation: int = cv2.INTER_LINEAR,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.p_replace = cast(tuple[float, float], p_replace)
self.n_segments = cast(tuple[int, int], n_segments)
self.max_size = max_size
self.interpolation = interpolation
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "p_replace", "n_segments", "max_size", "interpolation"
def get_params(self) -> dict[str, Any]:
n_segments = self.py_random.randint(*self.n_segments)
p = self.py_random.uniform(*self.p_replace)
return {
"replace_samples": self.random_generator.random(n_segments) < p,
"n_segments": n_segments,
}
def apply(
self,
img: np.ndarray,
replace_samples: Sequence[bool],
n_segments: int,
**kwargs: Any,
) -> np.ndarray:
return fmain.superpixels(
img,
n_segments,
replace_samples,
self.max_size,
self.interpolation,
)
class ToFloat
(max_value=None, p=1.0, always_apply=None)
[view source on GitHub] ¶
Convert the input image to a floating-point representation.
This transform divides pixel values by max_value
to get a float32 output array where all values lie in the range [0, 1.0]. It's useful for normalizing image data before feeding it into neural networks or other algorithms that expect float input.
Parameters:
Name | Type | Description |
---|---|---|
max_value | float | None | The maximum possible input value. If None, the transform will try to infer the maximum value by inspecting the data type of the input image: - uint8: 255 - uint16: 65535 - uint32: 4294967295 - float32: 1.0 Default: None. |
p | float | Probability of applying the transform. Default: 1.0. |
Targets
image, volume
Image types: uint8, uint16, uint32, float32
Returns:
Type | Description |
---|---|
np.ndarray | Image in floating point representation, with values in range [0, 1.0]. |
Note
- If the input image is already float32 with values in [0, 1], it will be returned unchanged.
- For integer types (uint8, uint16, uint32), the function will scale the values to [0, 1] range.
- The output will always be float32, regardless of the input type.
- This transform is often used as a preprocessing step before applying other transformations or feeding the image into a neural network.
Exceptions:
Type | Description |
---|---|
TypeError | If the input image data type is not supported. |
Examples:
>>> import numpy as np
>>> import albumentations as A
>>>
# Convert uint8 image to float
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ToFloat(max_value=None)
>>> float_image = transform(image=image)['image']
>>> assert float_image.dtype == np.float32
>>> assert 0 <= float_image.min() <= float_image.max() <= 1.0
>>>
# Convert uint16 image to float with custom max_value
>>> image = np.random.randint(0, 4096, (100, 100, 3), dtype=np.uint16)
>>> transform = A.ToFloat(max_value=4095)
>>> float_image = transform(image=image)['image']
>>> assert float_image.dtype == np.float32
>>> assert 0 <= float_image.min() <= float_image.max() <= 1.0
See Also: FromFloat: The inverse operation, converting from float back to the original data type.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ToFloat(ImageOnlyTransform):
"""Convert the input image to a floating-point representation.
This transform divides pixel values by `max_value` to get a float32 output array
where all values lie in the range [0, 1.0]. It's useful for normalizing image data
before feeding it into neural networks or other algorithms that expect float input.
Args:
max_value (float | None): The maximum possible input value. If None, the transform
will try to infer the maximum value by inspecting the data type of the input image:
- uint8: 255
- uint16: 65535
- uint32: 4294967295
- float32: 1.0
Default: None.
p (float): Probability of applying the transform. Default: 1.0.
Targets:
image, volume
Image types:
uint8, uint16, uint32, float32
Returns:
np.ndarray: Image in floating point representation, with values in range [0, 1.0].
Note:
- If the input image is already float32 with values in [0, 1], it will be returned unchanged.
- For integer types (uint8, uint16, uint32), the function will scale the values to [0, 1] range.
- The output will always be float32, regardless of the input type.
- This transform is often used as a preprocessing step before applying other transformations
or feeding the image into a neural network.
Raises:
TypeError: If the input image data type is not supported.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>>
# Convert uint8 image to float
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ToFloat(max_value=None)
>>> float_image = transform(image=image)['image']
>>> assert float_image.dtype == np.float32
>>> assert 0 <= float_image.min() <= float_image.max() <= 1.0
>>>
# Convert uint16 image to float with custom max_value
>>> image = np.random.randint(0, 4096, (100, 100, 3), dtype=np.uint16)
>>> transform = A.ToFloat(max_value=4095)
>>> float_image = transform(image=image)['image']
>>> assert float_image.dtype == np.float32
>>> assert 0 <= float_image.min() <= float_image.max() <= 1.0
See Also:
FromFloat: The inverse operation, converting from float back to the original data type.
"""
class InitSchema(BaseTransformInitSchema):
max_value: float | None
def __init__(
self,
max_value: float | None = None,
p: float = 1.0,
always_apply: bool | None = None,
):
super().__init__(p, always_apply)
self.max_value = max_value
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
return to_float(img, self.max_value)
def get_transform_init_args_names(self) -> tuple[str]:
return ("max_value",)
class ToGray
(num_output_channels=3, method='weighted_average', always_apply=None, p=0.5)
[view source on GitHub] ¶
Convert an image to grayscale and optionally replicate the grayscale channel.
This transform first converts a color image to a single-channel grayscale image using various methods, then replicates the grayscale channel if num_output_channels is greater than 1.
Parameters:
Name | Type | Description |
---|---|---|
num_output_channels | int | The number of channels in the output image. If greater than 1, the grayscale channel will be replicated. Default: 3. |
method | Literal["weighted_average", "from_lab", "desaturation", "average", "max", "pca"] | The method used for grayscale conversion: - "weighted_average": Uses a weighted sum of RGB channels (0.299R + 0.587G + 0.114B). Works only with 3-channel images. Provides realistic results based on human perception. - "from_lab": Extracts the L channel from the LAB color space. Works only with 3-channel images. Gives perceptually uniform results. - "desaturation": Averages the maximum and minimum values across channels. Works with any number of channels. Fast but may not preserve perceived brightness well. - "average": Simple average of all channels. Works with any number of channels. Fast but may not give realistic results. - "max": Takes the maximum value across all channels. Works with any number of channels. Tends to produce brighter results. - "pca": Applies Principal Component Analysis to reduce channels. Works with any number of channels. Can preserve more information but is computationally intensive. |
p | float | Probability of applying the transform. Default: 0.5. |
Exceptions:
Type | Description |
---|---|
TypeError | If the input image doesn't have 3 channels for methods that require it. |
Note
- The transform first converts the input image to single-channel grayscale, then replicates this channel if num_output_channels > 1.
- "weighted_average" and "from_lab" are typically used in image processing and computer vision applications where accurate representation of human perception is important.
- "desaturation" and "average" are often used in simple image manipulation tools or when computational speed is a priority.
- "max" method can be useful in scenarios where preserving bright features is important, such as in some medical imaging applications.
- "pca" might be used in advanced image analysis tasks or when dealing with hyperspectral images.
Image types: uint8, float32
Returns:
Type | Description |
---|---|
np.ndarray | Grayscale image with the specified number of channels. |
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ToGray(ImageOnlyTransform):
"""Convert an image to grayscale and optionally replicate the grayscale channel.
This transform first converts a color image to a single-channel grayscale image using various methods,
then replicates the grayscale channel if num_output_channels is greater than 1.
Args:
num_output_channels (int): The number of channels in the output image. If greater than 1,
the grayscale channel will be replicated. Default: 3.
method (Literal["weighted_average", "from_lab", "desaturation", "average", "max", "pca"]):
The method used for grayscale conversion:
- "weighted_average": Uses a weighted sum of RGB channels (0.299R + 0.587G + 0.114B).
Works only with 3-channel images. Provides realistic results based on human perception.
- "from_lab": Extracts the L channel from the LAB color space.
Works only with 3-channel images. Gives perceptually uniform results.
- "desaturation": Averages the maximum and minimum values across channels.
Works with any number of channels. Fast but may not preserve perceived brightness well.
- "average": Simple average of all channels.
Works with any number of channels. Fast but may not give realistic results.
- "max": Takes the maximum value across all channels.
Works with any number of channels. Tends to produce brighter results.
- "pca": Applies Principal Component Analysis to reduce channels.
Works with any number of channels. Can preserve more information but is computationally intensive.
p (float): Probability of applying the transform. Default: 0.5.
Raises:
TypeError: If the input image doesn't have 3 channels for methods that require it.
Note:
- The transform first converts the input image to single-channel grayscale, then replicates
this channel if num_output_channels > 1.
- "weighted_average" and "from_lab" are typically used in image processing and computer vision
applications where accurate representation of human perception is important.
- "desaturation" and "average" are often used in simple image manipulation tools or when
computational speed is a priority.
- "max" method can be useful in scenarios where preserving bright features is important,
such as in some medical imaging applications.
- "pca" might be used in advanced image analysis tasks or when dealing with hyperspectral images.
Image types:
uint8, float32
Returns:
np.ndarray: Grayscale image with the specified number of channels.
"""
class InitSchema(BaseTransformInitSchema):
num_output_channels: int = Field(
default=3,
description="The number of output channels.",
ge=1,
)
method: Literal[
"weighted_average",
"from_lab",
"desaturation",
"average",
"max",
"pca",
]
def __init__(
self,
num_output_channels: int = 3,
method: Literal[
"weighted_average",
"from_lab",
"desaturation",
"average",
"max",
"pca",
] = "weighted_average",
always_apply: bool | None = None,
p: float = 0.5,
):
super().__init__(p=p, always_apply=always_apply)
self.num_output_channels = num_output_channels
self.method = method
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
if is_grayscale_image(img):
warnings.warn("The image is already gray.", stacklevel=2)
return img
num_channels = get_num_channels(img)
if num_channels != NUM_RGB_CHANNELS and self.method not in {
"desaturation",
"average",
"max",
"pca",
}:
msg = "ToGray transformation expects 3-channel images."
raise TypeError(msg)
return fmain.to_gray(img, self.num_output_channels, self.method)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "num_output_channels", "method"
class ToRGB
(num_output_channels=3, p=1.0, always_apply=None)
[view source on GitHub] ¶
Convert an input image from grayscale to RGB format.
Parameters:
Name | Type | Description |
---|---|---|
num_output_channels | int | The number of channels in the output image. Default: 3. |
p | float | Probability of applying the transform. Default: 1.0. |
Targets
image, volume
Image types: uint8, float32
Number of channels: 1
Note
- For single-channel (grayscale) images, the channel is replicated to create an RGB image.
- If the input is already a 3-channel RGB image, it is returned unchanged.
- This transform does not change the data type of the image (e.g., uint8 remains uint8).
Exceptions:
Type | Description |
---|---|
TypeError | If the input image has more than 1 channel. |
Examples:
>>> import numpy as np
>>> import albumentations as A
>>>
>>> # Convert a grayscale image to RGB
>>> transform = A.Compose([A.ToRGB(p=1.0)])
>>> grayscale_image = np.random.randint(0, 256, (100, 100), dtype=np.uint8)
>>> rgb_image = transform(image=grayscale_image)['image']
>>> assert rgb_image.shape == (100, 100, 3)
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ToRGB(ImageOnlyTransform):
"""Convert an input image from grayscale to RGB format.
Args:
num_output_channels (int): The number of channels in the output image. Default: 3.
p (float): Probability of applying the transform. Default: 1.0.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
1
Note:
- For single-channel (grayscale) images, the channel is replicated to create an RGB image.
- If the input is already a 3-channel RGB image, it is returned unchanged.
- This transform does not change the data type of the image (e.g., uint8 remains uint8).
Raises:
TypeError: If the input image has more than 1 channel.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>>
>>> # Convert a grayscale image to RGB
>>> transform = A.Compose([A.ToRGB(p=1.0)])
>>> grayscale_image = np.random.randint(0, 256, (100, 100), dtype=np.uint8)
>>> rgb_image = transform(image=grayscale_image)['image']
>>> assert rgb_image.shape == (100, 100, 3)
"""
class InitSchema(BaseTransformInitSchema):
num_output_channels: int = Field(ge=1)
def __init__(
self,
num_output_channels: int = 3,
p: float = 1.0,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.num_output_channels = num_output_channels
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
if is_rgb_image(img):
warnings.warn("The image is already an RGB.", stacklevel=2)
return np.ascontiguousarray(img)
if not is_grayscale_image(img):
msg = "ToRGB transformation expects 2-dim images or 3-dim with the last dimension equal to 1."
raise TypeError(msg)
return fmain.grayscale_to_multichannel(
img,
num_output_channels=self.num_output_channels,
)
def get_transform_init_args_names(self) -> tuple[str]:
return ("num_output_channels",)
class ToSepia
(p=0.5, always_apply=None)
[view source on GitHub] ¶
Apply a sepia filter to the input image.
This transform converts a color image to a sepia tone, giving it a warm, brownish tint that is reminiscent of old photographs. The sepia effect is achieved by applying a specific color transformation matrix to the RGB channels of the input image. For grayscale images, the transform is a no-op and returns the original image.
Parameters:
Name | Type | Description |
---|---|---|
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Number of channels: 1,3
Note
- The sepia effect only works with RGB images (3 channels). For grayscale images, the original image is returned unchanged since the sepia transformation would have no visible effect when R=G=B.
- The sepia effect is created using a fixed color transformation matrix: [[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]
- The output image will have the same data type as the input image.
- For float32 images, ensure the input values are in the range [0, 1].
Examples:
>>> import numpy as np
>>> import albumentations as A
>>>
# Apply sepia effect to a uint8 RGB image
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ToSepia(p=1.0)
>>> sepia_image = transform(image=image)['image']
>>> assert sepia_image.shape == image.shape
>>> assert sepia_image.dtype == np.uint8
>>>
# Apply sepia effect to a float32 RGB image
>>> image = np.random.rand(100, 100, 3).astype(np.float32)
>>> transform = A.ToSepia(p=1.0)
>>> sepia_image = transform(image=image)['image']
>>> assert sepia_image.shape == image.shape
>>> assert sepia_image.dtype == np.float32
>>> assert 0 <= sepia_image.min() <= sepia_image.max() <= 1.0
>>>
# No effect on grayscale images
>>> gray_image = np.random.randint(0, 256, (100, 100), dtype=np.uint8)
>>> transform = A.ToSepia(p=1.0)
>>> result = transform(image=gray_image)['image']
>>> assert np.array_equal(result, gray_image)
Mathematical Formulation: Given an input pixel [R, G, B], the sepia tone is calculated as: R_sepia = 0.393R + 0.769G + 0.189B G_sepia = 0.349R + 0.686G + 0.168B B_sepia = 0.272R + 0.534G + 0.131*B
For grayscale images where R=G=B, this transformation would result in a simple
scaling of the original value, so we skip it.
The output values are clipped to the valid range for the image's data type.
See Also: ToGray: For converting images to grayscale instead of sepia.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class ToSepia(ImageOnlyTransform):
"""Apply a sepia filter to the input image.
This transform converts a color image to a sepia tone, giving it a warm, brownish tint
that is reminiscent of old photographs. The sepia effect is achieved by applying a
specific color transformation matrix to the RGB channels of the input image.
For grayscale images, the transform is a no-op and returns the original image.
Args:
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Number of channels:
1,3
Note:
- The sepia effect only works with RGB images (3 channels). For grayscale images,
the original image is returned unchanged since the sepia transformation would
have no visible effect when R=G=B.
- The sepia effect is created using a fixed color transformation matrix:
[[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]]
- The output image will have the same data type as the input image.
- For float32 images, ensure the input values are in the range [0, 1].
Examples:
>>> import numpy as np
>>> import albumentations as A
>>>
# Apply sepia effect to a uint8 RGB image
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.ToSepia(p=1.0)
>>> sepia_image = transform(image=image)['image']
>>> assert sepia_image.shape == image.shape
>>> assert sepia_image.dtype == np.uint8
>>>
# Apply sepia effect to a float32 RGB image
>>> image = np.random.rand(100, 100, 3).astype(np.float32)
>>> transform = A.ToSepia(p=1.0)
>>> sepia_image = transform(image=image)['image']
>>> assert sepia_image.shape == image.shape
>>> assert sepia_image.dtype == np.float32
>>> assert 0 <= sepia_image.min() <= sepia_image.max() <= 1.0
>>>
# No effect on grayscale images
>>> gray_image = np.random.randint(0, 256, (100, 100), dtype=np.uint8)
>>> transform = A.ToSepia(p=1.0)
>>> result = transform(image=gray_image)['image']
>>> assert np.array_equal(result, gray_image)
Mathematical Formulation:
Given an input pixel [R, G, B], the sepia tone is calculated as:
R_sepia = 0.393*R + 0.769*G + 0.189*B
G_sepia = 0.349*R + 0.686*G + 0.168*B
B_sepia = 0.272*R + 0.534*G + 0.131*B
For grayscale images where R=G=B, this transformation would result in a simple
scaling of the original value, so we skip it.
The output values are clipped to the valid range for the image's data type.
See Also:
ToGray: For converting images to grayscale instead of sepia.
"""
def __init__(self, p: float = 0.5, always_apply: bool | None = None):
super().__init__(p, always_apply)
self.sepia_transformation_matrix = np.array(
[[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]],
)
def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
if is_grayscale_image(img):
return img
if not is_rgb_image(img):
msg = "ToSepia transformation expects 1 or 3-channel images."
raise TypeError(msg)
return fmain.linear_transformation_rgb(img, self.sepia_transformation_matrix)
def get_transform_init_args_names(self) -> tuple[()]:
return ()
class UniformParams
[view source on GitHub] ¶
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class UniformParams(NoiseParamsBase):
noise_type: Literal["uniform"] = "uniform"
ranges: list[Sequence[float]] = Field(
description="List of (min, max) ranges for each channel",
min_length=1,
)
@field_validator("ranges", mode="after")
@classmethod
def validate_ranges(cls, v: list[Sequence[float]]) -> list[tuple[float, float]]:
result = []
for range_values in v:
if len(range_values) != PAIR:
raise ValueError("Each range must have exactly 2 values")
min_val, max_val = range_values
if not (-1 <= min_val <= max_val <= 1):
raise ValueError("Range values must be in [-1, 1] and min <= max")
result.append((float(min_val), float(max_val)))
return result
class UnsharpMask
(blur_limit=(3, 7), sigma_limit=0.0, alpha=(0.2, 0.5), threshold=10, p=0.5, always_apply=None)
[view source on GitHub] ¶
Sharpen the input image using Unsharp Masking processing and overlays the result with the original image.
Unsharp masking is a technique that enhances edge contrast in an image, creating the illusion of increased sharpness. This transform applies Gaussian blur to create a blurred version of the image, then uses this to create a mask which is combined with the original image to enhance edges and fine details.
Parameters:
Name | Type | Description |
---|---|---|
blur_limit | tuple[int, int] | int | maximum Gaussian kernel size for blurring the input image. Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma as |
sigma_limit | tuple[float, float] | float | Gaussian kernel standard deviation. Must be in range [0, inf). If set single value |
alpha | tuple[float, float] | range to choose the visibility of the sharpened image. At 0, only the original image is visible, at 1.0 only its sharpened version is visible. Default: (0.2, 0.5). |
threshold | int | Value to limit sharpening only for areas with high pixel difference between original image and it's smoothed version. Higher threshold means less sharpening on flat areas. Must be in range [0, 255]. Default: 10. |
p | float | probability of applying the transform. Default: 0.5. |
Targets
image, volume
Image types: uint8, float32
Note
- The algorithm creates a mask M = (I - G) * alpha, where I is the original image and G is the Gaussian blurred version.
- The final image is computed as: output = I + M if |I - G| > threshold, else I.
- Higher alpha values increase the strength of the sharpening effect.
- Higher threshold values limit the sharpening effect to areas with more significant edges or details.
- The blur_limit and sigma_limit parameters control the Gaussian blur used to create the mask.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>>
# Apply UnsharpMask with default parameters
>>> transform = A.UnsharpMask(p=1.0)
>>> sharpened_image = transform(image=image)['image']
>>>
# Apply UnsharpMask with custom parameters
>>> transform = A.UnsharpMask(
... blur_limit=(3, 7),
... sigma_limit=(0.1, 0.5),
... alpha=(0.2, 0.7),
... threshold=15,
... p=1.0
... )
>>> sharpened_image = transform(image=image)['image']
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/transforms.py
class UnsharpMask(ImageOnlyTransform):
"""Sharpen the input image using Unsharp Masking processing and overlays the result with the original image.
Unsharp masking is a technique that enhances edge contrast in an image, creating the illusion of increased
sharpness.
This transform applies Gaussian blur to create a blurred version of the image, then uses this to create a mask
which is combined with the original image to enhance edges and fine details.
Args:
blur_limit (tuple[int, int] | int): maximum Gaussian kernel size for blurring the input image.
Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma
as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`.
If set single value `blur_limit` will be in range (0, blur_limit).
Default: (3, 7).
sigma_limit (tuple[float, float] | float): Gaussian kernel standard deviation. Must be in range [0, inf).
If set single value `sigma_limit` will be in range (0, sigma_limit).
If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0.
alpha (tuple[float, float]): range to choose the visibility of the sharpened image.
At 0, only the original image is visible, at 1.0 only its sharpened version is visible.
Default: (0.2, 0.5).
threshold (int): Value to limit sharpening only for areas with high pixel difference between original image
and it's smoothed version. Higher threshold means less sharpening on flat areas.
Must be in range [0, 255]. Default: 10.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image, volume
Image types:
uint8, float32
Note:
- The algorithm creates a mask M = (I - G) * alpha, where I is the original image and G is the Gaussian
blurred version.
- The final image is computed as: output = I + M if |I - G| > threshold, else I.
- Higher alpha values increase the strength of the sharpening effect.
- Higher threshold values limit the sharpening effect to areas with more significant edges or details.
- The blur_limit and sigma_limit parameters control the Gaussian blur used to create the mask.
References:
- https://en.wikipedia.org/wiki/Unsharp_masking
- https://arxiv.org/pdf/2107.10833.pdf
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>>
# Apply UnsharpMask with default parameters
>>> transform = A.UnsharpMask(p=1.0)
>>> sharpened_image = transform(image=image)['image']
>>>
# Apply UnsharpMask with custom parameters
>>> transform = A.UnsharpMask(
... blur_limit=(3, 7),
... sigma_limit=(0.1, 0.5),
... alpha=(0.2, 0.7),
... threshold=15,
... p=1.0
... )
>>> sharpened_image = transform(image=image)['image']
"""
class InitSchema(BaseTransformInitSchema):
sigma_limit: NonNegativeFloatRangeType
alpha: ZeroOneRangeType
threshold: int = Field(ge=0, le=255)
blur_limit: ScaleIntType
@field_validator("blur_limit")
@classmethod
def process_blur(
cls,
value: ScaleIntType,
info: ValidationInfo,
) -> tuple[int, int]:
return fblur.process_blur_limit(value, info, min_value=3)
def __init__(
self,
blur_limit: ScaleIntType = (3, 7),
sigma_limit: ScaleFloatType = 0.0,
alpha: ScaleFloatType = (0.2, 0.5),
threshold: int = 10,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.blur_limit = cast(tuple[int, int], blur_limit)
self.sigma_limit = cast(tuple[float, float], sigma_limit)
self.alpha = cast(tuple[float, float], alpha)
self.threshold = threshold
def get_params(self) -> dict[str, Any]:
return {
"ksize": self.py_random.randrange(
self.blur_limit[0],
self.blur_limit[1] + 1,
2,
),
"sigma": self.py_random.uniform(*self.sigma_limit),
"alpha": self.py_random.uniform(*self.alpha),
}
def apply(
self,
img: np.ndarray,
ksize: int,
sigma: int,
alpha: float,
**params: Any,
) -> np.ndarray:
return fmain.unsharp_mask(
img,
ksize,
sigma=sigma,
alpha=alpha,
threshold=self.threshold,
)
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "blur_limit", "sigma_limit", "alpha", "threshold"