Skip to content

Resizing transforms (augmentations.geometric.resize)

class LongestMaxSize [view source on GitHub]

Rescale an image so that the longest side is equal to max_size or sides meet max_size_hw constraints, keeping the aspect ratio.

Parameters:

Name Type Description
max_size int, Sequence[int]

Maximum size of the longest side after the transformation. When using a list or tuple, the max size will be randomly selected from the values provided. Default: None.

max_size_hw tuple[int | None, int | None]

Maximum (height, width) constraints. Supports: - (height, width): Both dimensions must fit within these bounds - (height, None): Only height is constrained, width scales proportionally - (None, width): Only width is constrained, height scales proportionally If specified, max_size must be None. Default: None.

interpolation OpenCV flag

interpolation method. Default: cv2.INTER_LINEAR.

mask_interpolation OpenCV flag

flag that is used to specify the interpolation algorithm for mask. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_NEAREST.

p float

probability of applying the transform. Default: 1.

Targets

image, mask, bboxes, keypoints, volume, mask3d

Image types: uint8, float32

Note

  • If the longest side of the image is already equal to max_size, the image will not be resized.
  • This transform will not crop the image. The resulting image may be smaller than specified in both dimensions.
  • For non-square images, both sides will be scaled proportionally to maintain the aspect ratio.
  • Bounding boxes and keypoints are scaled accordingly.

Mathematical Details: Let (W, H) be the original width and height of the image.

When using max_size:
    1. The scaling factor s is calculated as:
       s = max_size / max(W, H)
    2. The new dimensions (W', H') are:
       W' = W * s
       H' = H * s

When using max_size_hw=(H_target, W_target):
    1. For both dimensions specified:
       s = min(H_target/H, W_target/W)
       This ensures both dimensions fit within the specified bounds.

    2. For height only (W_target=None):
       s = H_target/H
       Width will scale proportionally.

    3. For width only (H_target=None):
       s = W_target/W
       Height will scale proportionally.

    4. The new dimensions (W', H') are:
       W' = W * s
       H' = H * s

Examples:

Python
>>> import albumentations as A
>>> import cv2
>>> # Using max_size
>>> transform1 = A.LongestMaxSize(max_size=1024)
>>> # Input image (1500, 800) -> Output (1024, 546)
>>>
>>> # Using max_size_hw with both dimensions
>>> transform2 = A.LongestMaxSize(max_size_hw=(800, 1024))
>>> # Input (1500, 800) -> Output (800, 427)
>>> # Input (800, 1500) -> Output (546, 1024)
>>>
>>> # Using max_size_hw with only height
>>> transform3 = A.LongestMaxSize(max_size_hw=(800, None))
>>> # Input (1500, 800) -> Output (800, 427)
>>>
>>> # Common use case with padding
>>> transform4 = A.Compose([
...     A.LongestMaxSize(max_size=1024),
...     A.PadIfNeeded(min_height=1024, min_width=1024),
... ])

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/geometric/resize.py
Python
class LongestMaxSize(MaxSizeTransform):
    """Rescale an image so that the longest side is equal to max_size or sides meet max_size_hw constraints,
        keeping the aspect ratio.

    Args:
        max_size (int, Sequence[int], optional): Maximum size of the longest side after the transformation.
            When using a list or tuple, the max size will be randomly selected from the values provided. Default: None.
        max_size_hw (tuple[int | None, int | None], optional): Maximum (height, width) constraints. Supports:
            - (height, width): Both dimensions must fit within these bounds
            - (height, None): Only height is constrained, width scales proportionally
            - (None, width): Only width is constrained, height scales proportionally
            If specified, max_size must be None. Default: None.
        interpolation (OpenCV flag): interpolation method. Default: cv2.INTER_LINEAR.
        mask_interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm for mask.
            Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_NEAREST.
        p (float): probability of applying the transform. Default: 1.

    Targets:
        image, mask, bboxes, keypoints, volume, mask3d

    Image types:
        uint8, float32

    Note:
        - If the longest side of the image is already equal to max_size, the image will not be resized.
        - This transform will not crop the image. The resulting image may be smaller than specified in both dimensions.
        - For non-square images, both sides will be scaled proportionally to maintain the aspect ratio.
        - Bounding boxes and keypoints are scaled accordingly.

    Mathematical Details:
        Let (W, H) be the original width and height of the image.

        When using max_size:
            1. The scaling factor s is calculated as:
               s = max_size / max(W, H)
            2. The new dimensions (W', H') are:
               W' = W * s
               H' = H * s

        When using max_size_hw=(H_target, W_target):
            1. For both dimensions specified:
               s = min(H_target/H, W_target/W)
               This ensures both dimensions fit within the specified bounds.

            2. For height only (W_target=None):
               s = H_target/H
               Width will scale proportionally.

            3. For width only (H_target=None):
               s = W_target/W
               Height will scale proportionally.

            4. The new dimensions (W', H') are:
               W' = W * s
               H' = H * s

    Examples:
        >>> import albumentations as A
        >>> import cv2
        >>> # Using max_size
        >>> transform1 = A.LongestMaxSize(max_size=1024)
        >>> # Input image (1500, 800) -> Output (1024, 546)
        >>>
        >>> # Using max_size_hw with both dimensions
        >>> transform2 = A.LongestMaxSize(max_size_hw=(800, 1024))
        >>> # Input (1500, 800) -> Output (800, 427)
        >>> # Input (800, 1500) -> Output (546, 1024)
        >>>
        >>> # Using max_size_hw with only height
        >>> transform3 = A.LongestMaxSize(max_size_hw=(800, None))
        >>> # Input (1500, 800) -> Output (800, 427)
        >>>
        >>> # Common use case with padding
        >>> transform4 = A.Compose([
        ...     A.LongestMaxSize(max_size=1024),
        ...     A.PadIfNeeded(min_height=1024, min_width=1024),
        ... ])
    """

    def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
        img_h, img_w = params["shape"][:2]

        if self.max_size is not None:
            if isinstance(self.max_size, (list, tuple)):
                max_size = self.py_random.choice(self.max_size)
            else:
                max_size = self.max_size
            scale = max_size / max(img_h, img_w)
        elif self.max_size_hw is not None:
            # We know max_size_hw is not None here due to model validator
            max_h, max_w = self.max_size_hw
            if max_h is not None and max_w is not None:
                # Scale based on longest side to maintain aspect ratio
                h_scale = max_h / img_h
                w_scale = max_w / img_w
                scale = min(h_scale, w_scale)
            elif max_h is not None:
                # Only height specified
                scale = max_h / img_h
            else:
                # Only width specified
                scale = max_w / img_w

        return {"scale": scale}

class MaxSizeTransform (max_size=None, max_size_hw=None, interpolation=1, mask_interpolation=0, p=1) [view source on GitHub]

Base class for transforms that resize based on maximum size constraints.

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/geometric/resize.py
Python
class MaxSizeTransform(DualTransform):
    """Base class for transforms that resize based on maximum size constraints."""

    _targets = ALL_TARGETS

    class InitSchema(BaseTransformInitSchema):
        max_size: int | list[int] | None
        max_size_hw: tuple[int | None, int | None] | None
        interpolation: InterpolationType
        mask_interpolation: InterpolationType

        @model_validator(mode="after")
        def validate_size_parameters(self) -> Self:
            if self.max_size is None and self.max_size_hw is None:
                raise ValueError("Either max_size or max_size_hw must be specified")
            if self.max_size is not None and self.max_size_hw is not None:
                raise ValueError("Only one of max_size or max_size_hw should be specified")
            return self

    def __init__(
        self,
        max_size: int | Sequence[int] | None = None,
        max_size_hw: tuple[int | None, int | None] | None = None,
        interpolation: int = cv2.INTER_LINEAR,
        mask_interpolation: int = cv2.INTER_NEAREST,
        p: float = 1,
    ):
        super().__init__(p=p)
        self.max_size = max_size
        self.max_size_hw = max_size_hw
        self.interpolation = interpolation
        self.mask_interpolation = mask_interpolation

    def apply(
        self,
        img: np.ndarray,
        scale: float,
        **params: Any,
    ) -> np.ndarray:
        height, width = img.shape[:2]
        new_height, new_width = max(1, round(height * scale)), max(1, round(width * scale))
        return fgeometric.resize(img, (new_height, new_width), interpolation=self.interpolation)

    def apply_to_mask(
        self,
        mask: np.ndarray,
        scale: float,
        **params: Any,
    ) -> np.ndarray:
        height, width = mask.shape[:2]
        new_height, new_width = max(1, round(height * scale)), max(1, round(width * scale))
        return fgeometric.resize(mask, (new_height, new_width), interpolation=self.mask_interpolation)

    def apply_to_bboxes(self, bboxes: np.ndarray, **params: Any) -> np.ndarray:
        # Bounding box coordinates are scale invariant
        return bboxes

    def apply_to_keypoints(
        self,
        keypoints: np.ndarray,
        scale: float,
        **params: Any,
    ) -> np.ndarray:
        return fgeometric.keypoints_scale(keypoints, scale, scale)

    @batch_transform("spatial", has_batch_dim=True, has_depth_dim=False)
    def apply_to_images(self, images: np.ndarray, *args: Any, **params: Any) -> np.ndarray:
        return self.apply(images, *args, **params)

    @batch_transform("spatial", has_batch_dim=False, has_depth_dim=True)
    def apply_to_volume(self, volume: np.ndarray, *args: Any, **params: Any) -> np.ndarray:
        return self.apply(volume, *args, **params)

    @batch_transform("spatial", has_batch_dim=True, has_depth_dim=True)
    def apply_to_volumes(self, volumes: np.ndarray, *args: Any, **params: Any) -> np.ndarray:
        return self.apply(volumes, *args, **params)

    @batch_transform("spatial", has_batch_dim=True, has_depth_dim=True)
    def apply_to_mask3d(self, mask3d: np.ndarray, *args: Any, **params: Any) -> np.ndarray:
        return self.apply_to_mask(mask3d, *args, **params)

    @batch_transform("spatial", has_batch_dim=True, has_depth_dim=True)
    def apply_to_masks3d(self, masks3d: np.ndarray, *args: Any, **params: Any) -> np.ndarray:
        return self.apply_to_mask(masks3d, *args, **params)

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return "max_size", "max_size_hw", "interpolation", "mask_interpolation"

class RandomScale (scale_limit=(-0.1, 0.1), interpolation=1, mask_interpolation=0, p=0.5) [view source on GitHub]

Randomly resize the input. Output image size is different from the input image size.

Parameters:

Name Type Description
scale_limit float or tuple[float, float]

scaling factor range. If scale_limit is a single float value, the range will be (-scale_limit, scale_limit). Note that the scale_limit will be biased by 1. If scale_limit is a tuple, like (low, high), sampling will be done from the range (1 + low, 1 + high). Default: (-0.1, 0.1).

interpolation OpenCV flag

flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR.

mask_interpolation OpenCV flag

flag that is used to specify the interpolation algorithm for mask. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_NEAREST.

p float

probability of applying the transform. Default: 0.5.

Targets

image, mask, bboxes, keypoints, volume, mask3d

Image types: uint8, float32

Note

  • The output image size is different from the input image size.
  • Scale factor is sampled independently per image side (width and height).
  • Bounding box coordinates are scaled accordingly.
  • Keypoint coordinates are scaled accordingly.

Mathematical formulation: Let (W, H) be the original image dimensions and (W', H') be the output dimensions. The scale factor s is sampled from the range [1 + scale_limit[0], 1 + scale_limit[1]]. Then, W' = W * s and H' = H * s.

Examples:

Python
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> transform = A.RandomScale(scale_limit=0.1, p=1.0)
>>> result = transform(image=image)
>>> scaled_image = result['image']
# scaled_image will have dimensions in the range [90, 110] x [90, 110]
# (assuming the scale_limit of 0.1 results in a scaling factor between 0.9 and 1.1)

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/geometric/resize.py
Python
class RandomScale(DualTransform):
    """Randomly resize the input. Output image size is different from the input image size.

    Args:
        scale_limit (float or tuple[float, float]): scaling factor range. If scale_limit is a single float value, the
            range will be (-scale_limit, scale_limit). Note that the scale_limit will be biased by 1.
            If scale_limit is a tuple, like (low, high), sampling will be done from the range (1 + low, 1 + high).
            Default: (-0.1, 0.1).
        interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        mask_interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm for mask.
            Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_NEAREST.
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, bboxes, keypoints, volume, mask3d

    Image types:
        uint8, float32

    Note:
        - The output image size is different from the input image size.
        - Scale factor is sampled independently per image side (width and height).
        - Bounding box coordinates are scaled accordingly.
        - Keypoint coordinates are scaled accordingly.

    Mathematical formulation:
        Let (W, H) be the original image dimensions and (W', H') be the output dimensions.
        The scale factor s is sampled from the range [1 + scale_limit[0], 1 + scale_limit[1]].
        Then, W' = W * s and H' = H * s.

    Example:
        >>> import numpy as np
        >>> import albumentations as A
        >>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
        >>> transform = A.RandomScale(scale_limit=0.1, p=1.0)
        >>> result = transform(image=image)
        >>> scaled_image = result['image']
        # scaled_image will have dimensions in the range [90, 110] x [90, 110]
        # (assuming the scale_limit of 0.1 results in a scaling factor between 0.9 and 1.1)

    """

    _targets = ALL_TARGETS

    class InitSchema(BaseTransformInitSchema):
        scale_limit: ScaleFloatType
        interpolation: InterpolationType
        mask_interpolation: InterpolationType

        @field_validator("scale_limit")
        @classmethod
        def check_scale_limit(cls, v: ScaleFloatType) -> tuple[float, float]:
            return to_tuple(v, bias=1.0)

    def __init__(
        self,
        scale_limit: ScaleFloatType = (-0.1, 0.1),
        interpolation: int = cv2.INTER_LINEAR,
        mask_interpolation: int = cv2.INTER_NEAREST,
        p: float = 0.5,
    ):
        super().__init__(p=p)
        self.scale_limit = cast(tuple[float, float], scale_limit)
        self.interpolation = interpolation
        self.mask_interpolation = mask_interpolation

    def get_params(self) -> dict[str, float]:
        return {"scale": self.py_random.uniform(*self.scale_limit)}

    def apply(
        self,
        img: np.ndarray,
        scale: float,
        **params: Any,
    ) -> np.ndarray:
        return fgeometric.scale(img, scale, self.interpolation)

    def apply_to_mask(
        self,
        mask: np.ndarray,
        scale: float,
        **params: Any,
    ) -> np.ndarray:
        return fgeometric.scale(mask, scale, self.mask_interpolation)

    def apply_to_bboxes(self, bboxes: np.ndarray, **params: Any) -> np.ndarray:
        # Bounding box coordinates are scale invariant
        return bboxes

    def apply_to_keypoints(
        self,
        keypoints: np.ndarray,
        scale: float,
        **params: Any,
    ) -> np.ndarray:
        return fgeometric.keypoints_scale(keypoints, scale, scale)

    def get_transform_init_args(self) -> dict[str, Any]:
        return {
            "interpolation": self.interpolation,
            "mask_interpolation": self.mask_interpolation,
            "scale_limit": to_tuple(self.scale_limit, bias=-1.0),
        }

class Resize (height, width, interpolation=1, mask_interpolation=0, p=1) [view source on GitHub]

Resize the input to the given height and width.

Parameters:

Name Type Description
height int

desired height of the output.

width int

desired width of the output.

interpolation OpenCV flag

flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR.

mask_interpolation OpenCV flag

flag that is used to specify the interpolation algorithm for mask. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_NEAREST.

p float

probability of applying the transform. Default: 1.

Targets

image, mask, bboxes, keypoints, volume, mask3d

Image types: uint8, float32

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/geometric/resize.py
Python
class Resize(DualTransform):
    """Resize the input to the given height and width.

    Args:
        height (int): desired height of the output.
        width (int): desired width of the output.
        interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        mask_interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm for mask.
            Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_NEAREST.
        p (float): probability of applying the transform. Default: 1.

    Targets:
        image, mask, bboxes, keypoints, volume, mask3d

    Image types:
        uint8, float32

    """

    _targets = ALL_TARGETS

    class InitSchema(BaseTransformInitSchema):
        height: int = Field(ge=1)
        width: int = Field(ge=1)
        interpolation: InterpolationType
        mask_interpolation: InterpolationType

    def __init__(
        self,
        height: int,
        width: int,
        interpolation: int = cv2.INTER_LINEAR,
        mask_interpolation: int = cv2.INTER_NEAREST,
        p: float = 1,
    ):
        super().__init__(p=p)
        self.height = height
        self.width = width
        self.interpolation = interpolation
        self.mask_interpolation = mask_interpolation

    def apply(self, img: np.ndarray, **params: Any) -> np.ndarray:
        return fgeometric.resize(img, (self.height, self.width), interpolation=self.interpolation)

    def apply_to_mask(self, mask: np.ndarray, **params: Any) -> np.ndarray:
        return fgeometric.resize(mask, (self.height, self.width), interpolation=self.mask_interpolation)

    def apply_to_bboxes(self, bboxes: np.ndarray, **params: Any) -> np.ndarray:
        # Bounding box coordinates are scale invariant
        return bboxes

    def apply_to_keypoints(self, keypoints: np.ndarray, **params: Any) -> np.ndarray:
        height, width = params["shape"][:2]
        scale_x = self.width / width
        scale_y = self.height / height
        return fgeometric.keypoints_scale(keypoints, scale_x, scale_y)

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return "height", "width", "interpolation", "mask_interpolation"

class SmallestMaxSize [view source on GitHub]

Rescale an image so that minimum side is equal to max_size or sides meet max_size_hw constraints, keeping the aspect ratio.

Parameters:

Name Type Description
max_size int, list of int

Maximum size of smallest side of the image after the transformation. When using a list, max size will be randomly selected from the values in the list. Default: None.

max_size_hw tuple[int | None, int | None]

Maximum (height, width) constraints. Supports: - (height, width): Both dimensions must be at least these values - (height, None): Only height is constrained, width scales proportionally - (None, width): Only width is constrained, height scales proportionally If specified, max_size must be None. Default: None.

interpolation OpenCV flag

Flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR.

mask_interpolation OpenCV flag

flag that is used to specify the interpolation algorithm for mask. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_NEAREST.

p float

Probability of applying the transform. Default: 1.

Targets

image, mask, bboxes, keypoints, volume, mask3d

Image types: uint8, float32

Note

  • If the smallest side of the image is already equal to max_size, the image will not be resized.
  • This transform will not crop the image. The resulting image may be larger than specified in both dimensions.
  • For non-square images, both sides will be scaled proportionally to maintain the aspect ratio.
  • Bounding boxes and keypoints are scaled accordingly.

Mathematical Details: Let (W, H) be the original width and height of the image.

When using max_size:
    1. The scaling factor s is calculated as:
       s = max_size / min(W, H)
    2. The new dimensions (W', H') are:
       W' = W * s
       H' = H * s

When using max_size_hw=(H_target, W_target):
    1. For both dimensions specified:
       s = max(H_target/H, W_target/W)
       This ensures both dimensions are at least as large as specified.

    2. For height only (W_target=None):
       s = H_target/H
       Width will scale proportionally.

    3. For width only (H_target=None):
       s = W_target/W
       Height will scale proportionally.

    4. The new dimensions (W', H') are:
       W' = W * s
       H' = H * s

Examples:

Python
>>> import numpy as np
>>> import albumentations as A
>>> # Using max_size
>>> transform1 = A.SmallestMaxSize(max_size=120)
>>> # Input image (100, 150) -> Output (120, 180)
>>>
>>> # Using max_size_hw with both dimensions
>>> transform2 = A.SmallestMaxSize(max_size_hw=(100, 200))
>>> # Input (80, 160) -> Output (100, 200)
>>> # Input (160, 80) -> Output (400, 200)
>>>
>>> # Using max_size_hw with only height
>>> transform3 = A.SmallestMaxSize(max_size_hw=(100, None))
>>> # Input (80, 160) -> Output (100, 200)

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/geometric/resize.py
Python
class SmallestMaxSize(MaxSizeTransform):
    """Rescale an image so that minimum side is equal to max_size or sides meet max_size_hw constraints,
    keeping the aspect ratio.

    Args:
        max_size (int, list of int, optional): Maximum size of smallest side of the image after the transformation.
            When using a list, max size will be randomly selected from the values in the list. Default: None.
        max_size_hw (tuple[int | None, int | None], optional): Maximum (height, width) constraints. Supports:
            - (height, width): Both dimensions must be at least these values
            - (height, None): Only height is constrained, width scales proportionally
            - (None, width): Only width is constrained, height scales proportionally
            If specified, max_size must be None. Default: None.
        interpolation (OpenCV flag): Flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        mask_interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm for mask.
            Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_NEAREST.
        p (float): Probability of applying the transform. Default: 1.

    Targets:
        image, mask, bboxes, keypoints, volume, mask3d

    Image types:
        uint8, float32

    Note:
        - If the smallest side of the image is already equal to max_size, the image will not be resized.
        - This transform will not crop the image. The resulting image may be larger than specified in both dimensions.
        - For non-square images, both sides will be scaled proportionally to maintain the aspect ratio.
        - Bounding boxes and keypoints are scaled accordingly.

    Mathematical Details:
        Let (W, H) be the original width and height of the image.

        When using max_size:
            1. The scaling factor s is calculated as:
               s = max_size / min(W, H)
            2. The new dimensions (W', H') are:
               W' = W * s
               H' = H * s

        When using max_size_hw=(H_target, W_target):
            1. For both dimensions specified:
               s = max(H_target/H, W_target/W)
               This ensures both dimensions are at least as large as specified.

            2. For height only (W_target=None):
               s = H_target/H
               Width will scale proportionally.

            3. For width only (H_target=None):
               s = W_target/W
               Height will scale proportionally.

            4. The new dimensions (W', H') are:
               W' = W * s
               H' = H * s

    Examples:
        >>> import numpy as np
        >>> import albumentations as A
        >>> # Using max_size
        >>> transform1 = A.SmallestMaxSize(max_size=120)
        >>> # Input image (100, 150) -> Output (120, 180)
        >>>
        >>> # Using max_size_hw with both dimensions
        >>> transform2 = A.SmallestMaxSize(max_size_hw=(100, 200))
        >>> # Input (80, 160) -> Output (100, 200)
        >>> # Input (160, 80) -> Output (400, 200)
        >>>
        >>> # Using max_size_hw with only height
        >>> transform3 = A.SmallestMaxSize(max_size_hw=(100, None))
        >>> # Input (80, 160) -> Output (100, 200)
    """

    def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
        img_h, img_w = params["shape"][:2]

        if self.max_size is not None:
            if isinstance(self.max_size, (list, tuple)):
                max_size = self.py_random.choice(self.max_size)
            else:
                max_size = self.max_size
            scale = max_size / min(img_h, img_w)
        elif self.max_size_hw is not None:
            max_h, max_w = self.max_size_hw
            if max_h is not None and max_w is not None:
                # Scale based on smallest side to maintain aspect ratio
                h_scale = max_h / img_h
                w_scale = max_w / img_w
                scale = max(h_scale, w_scale)
            elif max_h is not None:
                # Only height specified
                scale = max_h / img_h
            else:
                # Only width specified
                scale = max_w / img_w

        return {"scale": scale}