Geometric functional transforms (augmentations.geometric.functional)¶
def adjust_padding_by_position (h_top, h_bottom, w_left, w_right, position, py_random)
[view source on GitHub]¶
Adjust padding values based on desired position.
Source code in albumentations/augmentations/geometric/functional.py
def adjust_padding_by_position(
h_top: int,
h_bottom: int,
w_left: int,
w_right: int,
position: PositionType,
py_random: np.random.RandomState,
) -> tuple[int, int, int, int]:
"""Adjust padding values based on desired position."""
if position == "center":
return h_top, h_bottom, w_left, w_right
if position == "top_left":
return 0, h_top + h_bottom, 0, w_left + w_right
if position == "top_right":
return 0, h_top + h_bottom, w_left + w_right, 0
if position == "bottom_left":
return h_top + h_bottom, 0, 0, w_left + w_right
if position == "bottom_right":
return h_top + h_bottom, 0, w_left + w_right, 0
if position == "random":
h_pad = h_top + h_bottom
w_pad = w_left + w_right
h_top = py_random.randint(0, h_pad)
h_bottom = h_pad - h_top
w_left = py_random.randint(0, w_pad)
w_right = w_pad - w_left
return h_top, h_bottom, w_left, w_right
raise ValueError(f"Unknown position: {position}")
def almost_equal_intervals (n, parts)
[view source on GitHub]¶
Generates an array of nearly equal integer intervals that sum up to n
.
This function divides the number n
into parts
nearly equal parts. It ensures that the sum of all parts equals n
, and the difference between any two parts is at most one. This is useful for distributing a total amount into nearly equal discrete parts.
Parameters:
Name | Type | Description |
---|---|---|
n | int | The total value to be split. |
parts | int | The number of parts to split into. |
Returns:
Type | Description |
---|---|
np.ndarray | An array of integers where each integer represents the size of a part. |
Examples:
>>> almost_equal_intervals(20, 3)
array([7, 7, 6]) # Splits 20 into three parts: 7, 7, and 6
>>> almost_equal_intervals(16, 4)
array([4, 4, 4, 4]) # Splits 16 into four equal parts
Source code in albumentations/augmentations/geometric/functional.py
def almost_equal_intervals(n: int, parts: int) -> np.ndarray:
"""Generates an array of nearly equal integer intervals that sum up to `n`.
This function divides the number `n` into `parts` nearly equal parts. It ensures that
the sum of all parts equals `n`, and the difference between any two parts is at most one.
This is useful for distributing a total amount into nearly equal discrete parts.
Args:
n (int): The total value to be split.
parts (int): The number of parts to split into.
Returns:
np.ndarray: An array of integers where each integer represents the size of a part.
Example:
>>> almost_equal_intervals(20, 3)
array([7, 7, 6]) # Splits 20 into three parts: 7, 7, and 6
>>> almost_equal_intervals(16, 4)
array([4, 4, 4, 4]) # Splits 16 into four equal parts
"""
part_size, remainder = divmod(n, parts)
# Create an array with the base part size and adjust the first `remainder` parts by adding 1
return np.array(
[part_size + 1 if i < remainder else part_size for i in range(parts)],
)
def apply_affine_to_points (points, matrix)
[view source on GitHub]¶
Apply affine transformation to a set of points.
This function handles potential division by zero by replacing zero values in the homogeneous coordinate with a small epsilon value.
Parameters:
Name | Type | Description |
---|---|---|
points | np.ndarray | Array of points with shape (N, 2). |
matrix | np.ndarray | 3x3 affine transformation matrix. |
Returns:
Type | Description |
---|---|
np.ndarray | Transformed points with shape (N, 2). |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("points")
def apply_affine_to_points(points: np.ndarray, matrix: np.ndarray) -> np.ndarray:
"""Apply affine transformation to a set of points.
This function handles potential division by zero by replacing zero values
in the homogeneous coordinate with a small epsilon value.
Args:
points (np.ndarray): Array of points with shape (N, 2).
matrix (np.ndarray): 3x3 affine transformation matrix.
Returns:
np.ndarray: Transformed points with shape (N, 2).
"""
homogeneous_points = np.column_stack([points, np.ones(points.shape[0])])
transformed_points = homogeneous_points @ matrix.T
# Handle potential division by zero
epsilon = np.finfo(transformed_points.dtype).eps
transformed_points[:, 2] = np.where(
np.abs(transformed_points[:, 2]) < epsilon,
np.sign(transformed_points[:, 2]) * epsilon,
transformed_points[:, 2],
)
return transformed_points[:, :2] / transformed_points[:, 2:]
def bboxes_affine (bboxes, matrix, rotate_method, image_shape, border_mode, output_shape)
[view source on GitHub]¶
Apply an affine transformation to bounding boxes.
For reflection border modes (cv2.BORDER_REFLECT_101, cv2.BORDER_REFLECT), this function: 1. Calculates necessary padding to avoid information loss 2. Applies padding to the bounding boxes 3. Adjusts the transformation matrix to account for padding 4. Applies the affine transformation 5. Validates the transformed bounding boxes
For other border modes, it directly applies the affine transformation without padding.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | Input bounding boxes |
matrix | np.ndarray | Affine transformation matrix |
rotate_method | str | Method for rotating bounding boxes ('largest_box' or 'ellipse') |
image_shape | Sequence[int] | Shape of the input image |
border_mode | int | OpenCV border mode |
output_shape | Sequence[int] | Shape of the output image |
Returns:
Type | Description |
---|---|
np.ndarray | Transformed and normalized bounding boxes |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_affine(
bboxes: np.ndarray,
matrix: np.ndarray,
rotate_method: Literal["largest_box", "ellipse"],
image_shape: tuple[int, int],
border_mode: int,
output_shape: tuple[int, int],
) -> np.ndarray:
"""Apply an affine transformation to bounding boxes.
For reflection border modes (cv2.BORDER_REFLECT_101, cv2.BORDER_REFLECT), this function:
1. Calculates necessary padding to avoid information loss
2. Applies padding to the bounding boxes
3. Adjusts the transformation matrix to account for padding
4. Applies the affine transformation
5. Validates the transformed bounding boxes
For other border modes, it directly applies the affine transformation without padding.
Args:
bboxes (np.ndarray): Input bounding boxes
matrix (np.ndarray): Affine transformation matrix
rotate_method (str): Method for rotating bounding boxes ('largest_box' or 'ellipse')
image_shape (Sequence[int]): Shape of the input image
border_mode (int): OpenCV border mode
output_shape (Sequence[int]): Shape of the output image
Returns:
np.ndarray: Transformed and normalized bounding boxes
"""
if is_identity_matrix(matrix):
return bboxes
bboxes = denormalize_bboxes(bboxes, image_shape)
if border_mode in REFLECT_BORDER_MODES:
# Step 1: Compute affine transform padding
pad_left, pad_right, pad_top, pad_bottom = calculate_affine_transform_padding(
matrix,
image_shape,
)
grid_dimensions = get_pad_grid_dimensions(
pad_top,
pad_bottom,
pad_left,
pad_right,
image_shape,
)
bboxes = generate_reflected_bboxes(
bboxes,
grid_dimensions,
image_shape,
center_in_origin=True,
)
# Apply affine transform
if rotate_method == "largest_box":
transformed_bboxes = bboxes_affine_largest_box(bboxes, matrix)
elif rotate_method == "ellipse":
transformed_bboxes = bboxes_affine_ellipse(bboxes, matrix)
else:
raise ValueError(f"Method {rotate_method} is not a valid rotation method.")
# Validate and normalize bboxes
validated_bboxes = validate_bboxes(transformed_bboxes, output_shape)
return normalize_bboxes(validated_bboxes, output_shape)
def bboxes_affine_ellipse (bboxes, matrix)
[view source on GitHub]¶
Apply an affine transformation to bounding boxes using an ellipse approximation method.
This function transforms bounding boxes by approximating each box with an ellipse, transforming points along the ellipse's circumference, and then computing the new bounding box that encloses the transformed ellipse.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | An array of bounding boxes with shape (N, 4+) where N is the number of bounding boxes. Each row should contain [x_min, y_min, x_max, y_max] followed by any additional attributes (e.g., class labels). |
matrix | np.ndarray | The 3x3 affine transformation matrix to apply. |
Returns:
Type | Description |
---|---|
np.ndarray | An array of transformed bounding boxes with the same shape as the input. Each row contains [new_x_min, new_y_min, new_x_max, new_y_max] followed by any additional attributes from the input bounding boxes. |
Note
- This function assumes that the input bounding boxes are in the format [x_min, y_min, x_max, y_max].
- The ellipse approximation method can provide a tighter bounding box compared to the largest box method, especially for rotations.
- 360 points are used to approximate each ellipse, which provides a good balance between accuracy and computational efficiency.
- Any additional attributes beyond the first 4 coordinates are preserved unchanged.
- This method may be more suitable for objects that are roughly elliptical in shape.
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_affine_ellipse(bboxes: np.ndarray, matrix: np.ndarray) -> np.ndarray:
"""Apply an affine transformation to bounding boxes using an ellipse approximation method.
This function transforms bounding boxes by approximating each box with an ellipse,
transforming points along the ellipse's circumference, and then computing the
new bounding box that encloses the transformed ellipse.
Args:
bboxes (np.ndarray): An array of bounding boxes with shape (N, 4+) where N is the number of
bounding boxes. Each row should contain [x_min, y_min, x_max, y_max]
followed by any additional attributes (e.g., class labels).
matrix (np.ndarray): The 3x3 affine transformation matrix to apply.
Returns:
np.ndarray: An array of transformed bounding boxes with the same shape as the input.
Each row contains [new_x_min, new_y_min, new_x_max, new_y_max] followed by
any additional attributes from the input bounding boxes.
Note:
- This function assumes that the input bounding boxes are in the format [x_min, y_min, x_max, y_max].
- The ellipse approximation method can provide a tighter bounding box compared to the
largest box method, especially for rotations.
- 360 points are used to approximate each ellipse, which provides a good balance between
accuracy and computational efficiency.
- Any additional attributes beyond the first 4 coordinates are preserved unchanged.
- This method may be more suitable for objects that are roughly elliptical in shape.
"""
x_min, y_min, x_max, y_max = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
bbox_width = (x_max - x_min) / 2
bbox_height = (y_max - y_min) / 2
center_x = x_min + bbox_width
center_y = y_min + bbox_height
angles = np.arange(0, 360, dtype=np.float32)
cos_angles = np.cos(np.radians(angles))
sin_angles = np.sin(np.radians(angles))
# Generate points for all ellipses at once
x = bbox_width[:, np.newaxis] * sin_angles + center_x[:, np.newaxis]
y = bbox_height[:, np.newaxis] * cos_angles + center_y[:, np.newaxis]
points = np.stack([x, y], axis=-1).reshape(-1, 2)
# Transform all points at once using the helper function
transformed_points = apply_affine_to_points(points, matrix)
transformed_points = transformed_points.reshape(len(bboxes), -1, 2)
# Compute new bounding boxes
new_x_min = np.min(transformed_points[:, :, 0], axis=1)
new_x_max = np.max(transformed_points[:, :, 0], axis=1)
new_y_min = np.min(transformed_points[:, :, 1], axis=1)
new_y_max = np.max(transformed_points[:, :, 1], axis=1)
return np.column_stack([new_x_min, new_y_min, new_x_max, new_y_max, bboxes[:, 4:]])
def bboxes_affine_largest_box (bboxes, matrix)
[view source on GitHub]¶
Apply an affine transformation to bounding boxes and return the largest enclosing boxes.
This function transforms each corner of every bounding box using the given affine transformation matrix, then computes the new bounding boxes that fully enclose the transformed corners.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | An array of bounding boxes with shape (N, 4+) where N is the number of bounding boxes. Each row should contain [x_min, y_min, x_max, y_max] followed by any additional attributes (e.g., class labels). |
matrix | np.ndarray | The 3x3 affine transformation matrix to apply. |
Returns:
Type | Description |
---|---|
np.ndarray | An array of transformed bounding boxes with the same shape as the input. Each row contains [new_x_min, new_y_min, new_x_max, new_y_max] followed by any additional attributes from the input bounding boxes. |
Note
- This function assumes that the input bounding boxes are in the format [x_min, y_min, x_max, y_max].
- The resulting bounding boxes are the smallest axis-aligned boxes that completely enclose the transformed original boxes. They may be larger than the minimal possible bounding box if the original box becomes rotated.
- Any additional attributes beyond the first 4 coordinates are preserved unchanged.
- This method is called "largest box" because it returns the largest axis-aligned box that encloses all corners of the transformed bounding box.
Examples:
>>> bboxes = np.array([[10, 10, 20, 20, 1], [30, 30, 40, 40, 2]]) # Two boxes with class labels
>>> matrix = np.array([[2, 0, 5], [0, 2, 5], [0, 0, 1]]) # Scale by 2 and translate by (5, 5)
>>> transformed_bboxes = bboxes_affine_largest_box(bboxes, matrix)
>>> print(transformed_bboxes)
[[ 25. 25. 45. 45. 1.]
[ 65. 65. 85. 85. 2.]]
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_affine_largest_box(bboxes: np.ndarray, matrix: np.ndarray) -> np.ndarray:
"""Apply an affine transformation to bounding boxes and return the largest enclosing boxes.
This function transforms each corner of every bounding box using the given affine transformation
matrix, then computes the new bounding boxes that fully enclose the transformed corners.
Args:
bboxes (np.ndarray): An array of bounding boxes with shape (N, 4+) where N is the number of
bounding boxes. Each row should contain [x_min, y_min, x_max, y_max]
followed by any additional attributes (e.g., class labels).
matrix (np.ndarray): The 3x3 affine transformation matrix to apply.
Returns:
np.ndarray: An array of transformed bounding boxes with the same shape as the input.
Each row contains [new_x_min, new_y_min, new_x_max, new_y_max] followed by
any additional attributes from the input bounding boxes.
Note:
- This function assumes that the input bounding boxes are in the format [x_min, y_min, x_max, y_max].
- The resulting bounding boxes are the smallest axis-aligned boxes that completely
enclose the transformed original boxes. They may be larger than the minimal possible
bounding box if the original box becomes rotated.
- Any additional attributes beyond the first 4 coordinates are preserved unchanged.
- This method is called "largest box" because it returns the largest axis-aligned box
that encloses all corners of the transformed bounding box.
Example:
>>> bboxes = np.array([[10, 10, 20, 20, 1], [30, 30, 40, 40, 2]]) # Two boxes with class labels
>>> matrix = np.array([[2, 0, 5], [0, 2, 5], [0, 0, 1]]) # Scale by 2 and translate by (5, 5)
>>> transformed_bboxes = bboxes_affine_largest_box(bboxes, matrix)
>>> print(transformed_bboxes)
[[ 25. 25. 45. 45. 1.]
[ 65. 65. 85. 85. 2.]]
"""
# Extract corners of all bboxes
x_min, y_min, x_max, y_max = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
corners = (
np.array([[x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max]]).transpose(2, 0, 1).reshape(-1, 2)
)
# Transform all corners at once
transformed_corners = apply_affine_to_points(corners, matrix).reshape(-1, 4, 2)
# Compute new bounding boxes
new_x_min = np.min(transformed_corners[:, :, 0], axis=1)
new_x_max = np.max(transformed_corners[:, :, 0], axis=1)
new_y_min = np.min(transformed_corners[:, :, 1], axis=1)
new_y_max = np.max(transformed_corners[:, :, 1], axis=1)
return np.column_stack([new_x_min, new_y_min, new_x_max, new_y_max, bboxes[:, 4:]])
def bboxes_d4 (bboxes, group_member)
[view source on GitHub]¶
Applies a D_4
symmetry group transformation to a bounding box.
The function transforms a bounding box according to the specified group member from the D_4
group. These transformations include rotations and reflections, specified to work on an image's bounding box given its dimensions.
- bboxes: A numpy array of bounding boxes with shape (num_bboxes, 4+). Each row represents a bounding box (x_min, y_min, x_max, y_max, ...).
- group_member (D4Type): A string identifier for the
D_4
group transformation to apply. Valid values are 'e', 'r90', 'r180', 'r270', 'v', 'hvt', 'h', 't'.
- BoxInternalType: The transformed bounding box.
- ValueError: If an invalid group member is specified.
Examples:
- Applying a 90-degree rotation:
bbox_d4((10, 20, 110, 120), 'r90')
This would rotate the bounding box 90 degrees within a 100x100 image.
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_d4(
bboxes: np.ndarray,
group_member: D4Type,
) -> np.ndarray:
"""Applies a `D_4` symmetry group transformation to a bounding box.
The function transforms a bounding box according to the specified group member from the `D_4` group.
These transformations include rotations and reflections, specified to work on an image's bounding box given
its dimensions.
Parameters:
- bboxes: A numpy array of bounding boxes with shape (num_bboxes, 4+).
Each row represents a bounding box (x_min, y_min, x_max, y_max, ...).
- group_member (D4Type): A string identifier for the `D_4` group transformation to apply.
Valid values are 'e', 'r90', 'r180', 'r270', 'v', 'hvt', 'h', 't'.
Returns:
- BoxInternalType: The transformed bounding box.
Raises:
- ValueError: If an invalid group member is specified.
Examples:
- Applying a 90-degree rotation:
`bbox_d4((10, 20, 110, 120), 'r90')`
This would rotate the bounding box 90 degrees within a 100x100 image.
"""
transformations = {
"e": lambda x: x, # Identity transformation
"r90": lambda x: bboxes_rot90(x, 1), # Rotate 90 degrees
"r180": lambda x: bboxes_rot90(x, 2), # Rotate 180 degrees
"r270": lambda x: bboxes_rot90(x, 3), # Rotate 270 degrees
"v": lambda x: bboxes_vflip(x), # Vertical flip
"hvt": lambda x: bboxes_transpose(
bboxes_rot90(x, 2),
), # Reflect over anti-diagonal
"h": lambda x: bboxes_hflip(x), # Horizontal flip
"t": lambda x: bboxes_transpose(x), # Transpose (reflect over main diagonal)
}
# Execute the appropriate transformation
if group_member in transformations:
return transformations[group_member](bboxes)
raise ValueError(f"Invalid group member: {group_member}")
def bboxes_grid_shuffle (bboxes, tiles, mapping, image_shape, min_area, min_visibility)
[view source on GitHub]¶
Apply grid shuffle transformation to bounding boxes.
This function transforms bounding boxes according to a grid shuffle operation. It handles cases where bounding boxes may be split into multiple components after shuffling and applies filtering based on minimum area and visibility requirements.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | Array of bounding boxes with shape (N, 4+) where N is the number of boxes. Each box is in format [x_min, y_min, x_max, y_max, ...], where ... represents optional additional fields (e.g., class_id, score). |
tiles | np.ndarray | Array of tile coordinates with shape (M, 4) where M is the number of tiles. Each tile is in format [start_y, start_x, end_y, end_x]. |
mapping | list[int] | List of indices defining how tiles should be rearranged. Each index i in the list contains the index of the tile that should be moved to position i. |
image_shape | tuple[int, int] | Shape of the image as (height, width). |
min_area | float | Minimum area threshold in pixels. If a component's area after shuffling is smaller than this value, it will be filtered out. If None, no area filtering is applied. |
min_visibility | float | Minimum visibility ratio threshold in range [0, 1]. Calculated as (component_area / original_area). If a component's visibility is lower than this value, it will be filtered out. If None, no visibility filtering is applied. |
Returns:
Type | Description |
---|---|
np.ndarray | Array of transformed bounding boxes with shape (K, 4+) where K is the number of valid components after shuffling and filtering. The format of each box matches the input format, preserving any additional fields. If no valid components remain after filtering, returns an empty array with shape (0, C) where C matches the input column count. |
Note
- The function converts bboxes to masks before applying the transformation to handle cases where boxes may be split into multiple components.
- After shuffling, each component is validated against min_area and min_visibility requirements independently.
- Additional bbox fields (beyond x_min, y_min, x_max, y_max) are preserved and copied to all components derived from the same original bbox.
- Empty input arrays are handled gracefully and return empty arrays of the appropriate shape.
Examples:
>>> bboxes = np.array([[10, 10, 90, 90]]) # Single box crossing multiple tiles
>>> tiles = np.array([
... [0, 0, 50, 50], # top-left tile
... [0, 50, 50, 100], # top-right tile
... [50, 0, 100, 50], # bottom-left tile
... [50, 50, 100, 100] # bottom-right tile
... ])
>>> mapping = [3, 2, 1, 0] # Rotate tiles counter-clockwise
>>> result = bboxes_grid_shuffle(bboxes, tiles, mapping, (100, 100), 100, 0.2)
>>> # Result may contain multiple boxes if the original box was split
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_grid_shuffle(
bboxes: np.ndarray,
tiles: np.ndarray,
mapping: list[int],
image_shape: tuple[int, int],
min_area: float,
min_visibility: float,
) -> np.ndarray:
"""Apply grid shuffle transformation to bounding boxes.
This function transforms bounding boxes according to a grid shuffle operation. It handles cases
where bounding boxes may be split into multiple components after shuffling and applies
filtering based on minimum area and visibility requirements.
Args:
bboxes: Array of bounding boxes with shape (N, 4+) where N is the number of boxes.
Each box is in format [x_min, y_min, x_max, y_max, ...], where ... represents
optional additional fields (e.g., class_id, score).
tiles: Array of tile coordinates with shape (M, 4) where M is the number of tiles.
Each tile is in format [start_y, start_x, end_y, end_x].
mapping: List of indices defining how tiles should be rearranged. Each index i in the list
contains the index of the tile that should be moved to position i.
image_shape: Shape of the image as (height, width).
min_area: Minimum area threshold in pixels. If a component's area after shuffling is
smaller than this value, it will be filtered out. If None, no area filtering
is applied.
min_visibility: Minimum visibility ratio threshold in range [0, 1]. Calculated as
(component_area / original_area). If a component's visibility is lower
than this value, it will be filtered out. If None, no visibility
filtering is applied.
Returns:
np.ndarray: Array of transformed bounding boxes with shape (K, 4+) where K is the
number of valid components after shuffling and filtering. The format of
each box matches the input format, preserving any additional fields.
If no valid components remain after filtering, returns an empty array
with shape (0, C) where C matches the input column count.
Note:
- The function converts bboxes to masks before applying the transformation to handle
cases where boxes may be split into multiple components.
- After shuffling, each component is validated against min_area and min_visibility
requirements independently.
- Additional bbox fields (beyond x_min, y_min, x_max, y_max) are preserved and
copied to all components derived from the same original bbox.
- Empty input arrays are handled gracefully and return empty arrays of the
appropriate shape.
Example:
>>> bboxes = np.array([[10, 10, 90, 90]]) # Single box crossing multiple tiles
>>> tiles = np.array([
... [0, 0, 50, 50], # top-left tile
... [0, 50, 50, 100], # top-right tile
... [50, 0, 100, 50], # bottom-left tile
... [50, 50, 100, 100] # bottom-right tile
... ])
>>> mapping = [3, 2, 1, 0] # Rotate tiles counter-clockwise
>>> result = bboxes_grid_shuffle(bboxes, tiles, mapping, (100, 100), 100, 0.2)
>>> # Result may contain multiple boxes if the original box was split
"""
# Convert bboxes to masks
masks = masks_from_bboxes(bboxes, image_shape)
# Apply grid shuffle to each mask and handle split components
all_component_masks = []
extra_bbox_data = [] # Store additional bbox data for each component
for idx, mask in enumerate(masks):
original_area = np.sum(mask) # Get original mask area
# Shuffle the mask
shuffled_mask = swap_tiles_on_image(mask, tiles, mapping)
# Find connected components
num_components, components = cv2.connectedComponents(
shuffled_mask.astype(np.uint8),
)
# For each component, create a separate binary mask
for comp_idx in range(1, num_components): # Skip background (0)
component_mask = (components == comp_idx).astype(np.uint8)
# Calculate area and visibility ratio
component_area = np.sum(component_mask)
# Check if component meets minimum requirements
if is_valid_component(
component_area,
original_area,
min_area,
min_visibility,
):
all_component_masks.append(component_mask)
# Append additional bbox data for this component
if bboxes.shape[1] > NUM_BBOXES_COLUMNS_IN_ALBUMENTATIONS:
extra_bbox_data.append(bboxes[idx, 4:])
# Convert all component masks to bboxes
if all_component_masks:
all_component_masks = np.array(all_component_masks)
shuffled_bboxes = bboxes_from_masks(all_component_masks)
# Add back additional bbox data if present
if extra_bbox_data:
extra_bbox_data = np.array(extra_bbox_data)
return np.column_stack([shuffled_bboxes, extra_bbox_data])
else:
# Handle case where no valid components were found
return np.zeros((0, bboxes.shape[1]), dtype=bboxes.dtype)
return shuffled_bboxes
def bboxes_hflip (bboxes)
[view source on GitHub]¶
Flip bounding boxes horizontally around the y-axis.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | A numpy array of bounding boxes with shape (num_bboxes, 4+). Each row represents a bounding box (x_min, y_min, x_max, y_max, ...). |
Returns:
Type | Description |
---|---|
np.ndarray | A numpy array of horizontally flipped bounding boxes with the same shape as input. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_hflip(bboxes: np.ndarray) -> np.ndarray:
"""Flip bounding boxes horizontally around the y-axis.
Args:
bboxes: A numpy array of bounding boxes with shape (num_bboxes, 4+).
Each row represents a bounding box (x_min, y_min, x_max, y_max, ...).
Returns:
np.ndarray: A numpy array of horizontally flipped bounding boxes with the same shape as input.
"""
flipped_bboxes = bboxes.copy()
flipped_bboxes[:, 0] = 1 - bboxes[:, 2] # new x_min = 1 - x_max
flipped_bboxes[:, 2] = 1 - bboxes[:, 0] # new x_max = 1 - x_min
return flipped_bboxes
def bboxes_rot90 (bboxes, factor)
[view source on GitHub]¶
Rotates bounding boxes by 90 degrees CCW (see np.rot90)
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | A numpy array of bounding boxes with shape (num_bboxes, 4+). Each row represents a bounding box (x_min, y_min, x_max, y_max, ...). |
factor | int | Number of CCW rotations. Must be in set {0, 1, 2, 3} See np.rot90. |
Returns:
Type | Description |
---|---|
np.ndarray | A numpy array of rotated bounding boxes with the same shape as input. |
Exceptions:
Type | Description |
---|---|
ValueError | If factor is not in set {0, 1, 2, 3}. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_rot90(bboxes: np.ndarray, factor: int) -> np.ndarray:
"""Rotates bounding boxes by 90 degrees CCW (see np.rot90)
Args:
bboxes: A numpy array of bounding boxes with shape (num_bboxes, 4+).
Each row represents a bounding box (x_min, y_min, x_max, y_max, ...).
factor: Number of CCW rotations. Must be in set {0, 1, 2, 3} See np.rot90.
Returns:
np.ndarray: A numpy array of rotated bounding boxes with the same shape as input.
Raises:
ValueError: If factor is not in set {0, 1, 2, 3}.
"""
if factor not in {0, 1, 2, 3}:
raise ValueError("Parameter factor must be in set {0, 1, 2, 3}")
if factor == 0:
return bboxes
rotated_bboxes = bboxes.copy()
x_min, y_min, x_max, y_max = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
if factor == 1:
rotated_bboxes[:, 0] = y_min
rotated_bboxes[:, 1] = 1 - x_max
rotated_bboxes[:, 2] = y_max
rotated_bboxes[:, 3] = 1 - x_min
elif factor == ROT90_180_FACTOR:
rotated_bboxes[:, 0] = 1 - x_max
rotated_bboxes[:, 1] = 1 - y_max
rotated_bboxes[:, 2] = 1 - x_min
rotated_bboxes[:, 3] = 1 - y_min
elif factor == ROT90_270_FACTOR:
rotated_bboxes[:, 0] = 1 - y_max
rotated_bboxes[:, 1] = x_min
rotated_bboxes[:, 2] = 1 - y_min
rotated_bboxes[:, 3] = x_max
return rotated_bboxes
def bboxes_transpose (bboxes)
[view source on GitHub]¶
Transpose bounding boxes by swapping x and y coordinates.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | A numpy array of bounding boxes with shape (num_bboxes, 4+). Each row represents a bounding box (x_min, y_min, x_max, y_max, ...). |
Returns:
Type | Description |
---|---|
np.ndarray | A numpy array of transposed bounding boxes with the same shape as input. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_transpose(bboxes: np.ndarray) -> np.ndarray:
"""Transpose bounding boxes by swapping x and y coordinates.
Args:
bboxes: A numpy array of bounding boxes with shape (num_bboxes, 4+).
Each row represents a bounding box (x_min, y_min, x_max, y_max, ...).
Returns:
np.ndarray: A numpy array of transposed bounding boxes with the same shape as input.
"""
transposed_bboxes = bboxes.copy()
transposed_bboxes[:, [0, 1, 2, 3]] = bboxes[:, [1, 0, 3, 2]]
return transposed_bboxes
def bboxes_vflip (bboxes)
[view source on GitHub]¶
Flip bounding boxes vertically around the x-axis.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | A numpy array of bounding boxes with shape (num_bboxes, 4+). Each row represents a bounding box (x_min, y_min, x_max, y_max, ...). |
Returns:
Type | Description |
---|---|
np.ndarray | A numpy array of vertically flipped bounding boxes with the same shape as input. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def bboxes_vflip(bboxes: np.ndarray) -> np.ndarray:
"""Flip bounding boxes vertically around the x-axis.
Args:
bboxes: A numpy array of bounding boxes with shape (num_bboxes, 4+).
Each row represents a bounding box (x_min, y_min, x_max, y_max, ...).
Returns:
np.ndarray: A numpy array of vertically flipped bounding boxes with the same shape as input.
"""
flipped_bboxes = bboxes.copy()
flipped_bboxes[:, 1] = 1 - bboxes[:, 3] # new y_min = 1 - y_max
flipped_bboxes[:, 3] = 1 - bboxes[:, 1] # new y_max = 1 - y_min
return flipped_bboxes
def calculate_affine_transform_padding (matrix, image_shape)
[view source on GitHub]¶
Calculate the necessary padding for an affine transformation to avoid empty spaces.
Source code in albumentations/augmentations/geometric/functional.py
def calculate_affine_transform_padding(
matrix: np.ndarray,
image_shape: tuple[int, int],
) -> tuple[int, int, int, int]:
"""Calculate the necessary padding for an affine transformation to avoid empty spaces."""
height, width = image_shape[:2]
# Check for identity transform
if is_identity_matrix(matrix):
return (0, 0, 0, 0)
# Original corners
corners = np.array([[0, 0], [width, 0], [width, height], [0, height]])
# Transform corners
transformed_corners = apply_affine_to_points(corners, matrix)
# Ensure transformed_corners is 2D
transformed_corners = transformed_corners.reshape(-1, 2)
# Find box that includes both original and transformed corners
all_corners = np.vstack((corners, transformed_corners))
min_x, min_y = all_corners.min(axis=0)
max_x, max_y = all_corners.max(axis=0)
# Compute the inverse transform
inverse_matrix = np.linalg.inv(matrix)
# Apply inverse transform to all corners of the bounding box
bbox_corners = np.array(
[[min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y]],
)
inverse_corners = apply_affine_to_points(bbox_corners, inverse_matrix).reshape(
-1,
2,
)
min_x, min_y = inverse_corners.min(axis=0)
max_x, max_y = inverse_corners.max(axis=0)
pad_left = max(0, math.ceil(0 - min_x))
pad_right = max(0, math.ceil(max_x - width))
pad_top = max(0, math.ceil(0 - min_y))
pad_bottom = max(0, math.ceil(max_y - height))
return pad_left, pad_right, pad_top, pad_bottom
def center (image_shape)
[view source on GitHub]¶
Calculate the center coordinates if image. Used by images, masks and keypoints.
Parameters:
Name | Type | Description |
---|---|---|
image_shape | tuple[int, int] | The shape of the image. |
Returns:
Type | Description |
---|---|
tuple[float, float] | center_x, center_y |
Source code in albumentations/augmentations/geometric/functional.py
def center(image_shape: tuple[int, int]) -> tuple[float, float]:
"""Calculate the center coordinates if image. Used by images, masks and keypoints.
Args:
image_shape (tuple[int, int]): The shape of the image.
Returns:
tuple[float, float]: center_x, center_y
"""
height, width = image_shape[:2]
return width / 2 - 0.5, height / 2 - 0.5
def center_bbox (image_shape)
[view source on GitHub]¶
Calculate the center coordinates for of image for bounding boxes.
Parameters:
Name | Type | Description |
---|---|---|
image_shape | tuple[int, int] | The shape of the image. |
Returns:
Type | Description |
---|---|
tuple[float, float] | center_x, center_y |
Source code in albumentations/augmentations/geometric/functional.py
def center_bbox(image_shape: tuple[int, int]) -> tuple[float, float]:
"""Calculate the center coordinates for of image for bounding boxes.
Args:
image_shape (tuple[int, int]): The shape of the image.
Returns:
tuple[float, float]: center_x, center_y
"""
height, width = image_shape[:2]
return width / 2, height / 2
def compute_tps_weights (src_points, dst_points)
[view source on GitHub]¶
Compute Thin Plate Spline weights.
Parameters:
Name | Type | Description |
---|---|---|
src_points | np.ndarray | Source control points with shape (num_points, 2) |
dst_points | np.ndarray | Destination control points with shape (num_points, 2) |
Returns:
Type | Description |
---|---|
tuple of |
|
Note
The TPS interpolation is decomposed into: 1. Nonlinear part (controlled by kernel weights) 2. Affine part (global scaling, rotation, translation)
Source code in albumentations/augmentations/geometric/functional.py
def compute_tps_weights(
src_points: np.ndarray,
dst_points: np.ndarray,
) -> tuple[np.ndarray, np.ndarray]:
"""Compute Thin Plate Spline weights.
Args:
src_points: Source control points with shape (num_points, 2)
dst_points: Destination control points with shape (num_points, 2)
Returns:
tuple of:
- nonlinear_weights: TPS kernel weights for nonlinear deformation (num_points, 2)
- affine_weights: Weights for affine transformation (3, 2)
[constant term, x scale/shear, y scale/shear]
Note:
The TPS interpolation is decomposed into:
1. Nonlinear part (controlled by kernel weights)
2. Affine part (global scaling, rotation, translation)
"""
num_points = src_points.shape[0]
# Compute pairwise distances
distances = np.linalg.norm(src_points[:, None] - src_points, axis=2)
# Apply TPS kernel function: U(r) = r² log(r)
# Add small epsilon to avoid log(0)
kernel_matrix = np.where(
distances > 0,
distances * distances * np.log(distances + 1e-6),
0,
)
# Construct affine terms matrix [1, x, y]
affine_terms = np.ones((num_points, 3))
affine_terms[:, 1:] = src_points
# Build system matrix
system_matrix = np.zeros((num_points + 3, num_points + 3))
system_matrix[:num_points, :num_points] = kernel_matrix
system_matrix[:num_points, num_points:] = affine_terms
system_matrix[num_points:, :num_points] = affine_terms.T
# Right-hand side of the system
target_coords = np.zeros((num_points + 3, 2))
target_coords[:num_points] = dst_points
# Solve the system for both x and y coordinates
all_weights = np.linalg.solve(system_matrix, target_coords)
# Split weights into nonlinear and affine components
nonlinear_weights = all_weights[:num_points]
affine_weights = all_weights[num_points:]
return nonlinear_weights, affine_weights
def compute_transformed_image_bounds (matrix, image_shape)
[view source on GitHub]¶
Compute the bounds of an image after applying an affine transformation.
Parameters:
Name | Type | Description |
---|---|---|
matrix | np.ndarray | The 3x3 affine transformation matrix. |
image_shape | Tuple[int, int] | The shape of the image as (height, width). |
Returns:
Type | Description |
---|---|
tuple[np.ndarray, np.ndarray] | A tuple containing: - min_coords: An array with the minimum x and y coordinates. - max_coords: An array with the maximum x and y coordinates. |
Source code in albumentations/augmentations/geometric/functional.py
def compute_transformed_image_bounds(
matrix: np.ndarray,
image_shape: tuple[int, int],
) -> tuple[np.ndarray, np.ndarray]:
"""Compute the bounds of an image after applying an affine transformation.
Args:
matrix (np.ndarray): The 3x3 affine transformation matrix.
image_shape (Tuple[int, int]): The shape of the image as (height, width).
Returns:
tuple[np.ndarray, np.ndarray]: A tuple containing:
- min_coords: An array with the minimum x and y coordinates.
- max_coords: An array with the maximum x and y coordinates.
"""
height, width = image_shape[:2]
# Define the corners of the image
corners = np.array([[0, 0, 1], [width, 0, 1], [width, height, 1], [0, height, 1]])
# Transform the corners
transformed_corners = corners @ matrix.T
transformed_corners = transformed_corners[:, :2] / transformed_corners[:, 2:]
# Calculate the bounding box of the transformed corners
min_coords = np.floor(transformed_corners.min(axis=0)).astype(int)
max_coords = np.ceil(transformed_corners.max(axis=0)).astype(int)
return min_coords, max_coords
def create_affine_transformation_matrix (translate, shear, scale, rotate, shift)
[view source on GitHub]¶
Create an affine transformation matrix combining translation, shear, scale, and rotation.
Parameters:
Name | Type | Description |
---|---|---|
translate | dict[str, float] | Translation in x and y directions. |
shear | dict[str, float] | Shear in x and y directions (in degrees). |
scale | dict[str, float] | Scale factors for x and y directions. |
rotate | float | Rotation angle in degrees. |
shift | tuple[float, float] | Shift to apply before and after transformations. |
Returns:
Type | Description |
---|---|
np.ndarray | The resulting 3x3 affine transformation matrix. |
Source code in albumentations/augmentations/geometric/functional.py
def create_affine_transformation_matrix(
translate: XYInt,
shear: XYFloat,
scale: XYFloat,
rotate: float,
shift: tuple[float, float],
) -> np.ndarray:
"""Create an affine transformation matrix combining translation, shear, scale, and rotation.
Args:
translate (dict[str, float]): Translation in x and y directions.
shear (dict[str, float]): Shear in x and y directions (in degrees).
scale (dict[str, float]): Scale factors for x and y directions.
rotate (float): Rotation angle in degrees.
shift (tuple[float, float]): Shift to apply before and after transformations.
Returns:
np.ndarray: The resulting 3x3 affine transformation matrix.
"""
# Convert angles to radians
rotate_rad = np.deg2rad(rotate % 360)
shear_x_rad = np.deg2rad(shear["x"])
shear_y_rad = np.deg2rad(shear["y"])
# Create individual transformation matrices
# 1. Shift to top-left
m_shift_topleft = np.array([[1, 0, -shift[0]], [0, 1, -shift[1]], [0, 0, 1]])
# 2. Scale
m_scale = np.array([[scale["x"], 0, 0], [0, scale["y"], 0], [0, 0, 1]])
# 3. Rotation
m_rotate = np.array(
[
[np.cos(rotate_rad), np.sin(rotate_rad), 0],
[-np.sin(rotate_rad), np.cos(rotate_rad), 0],
[0, 0, 1],
],
)
# 4. Shear
m_shear = np.array(
[[1, np.tan(shear_x_rad), 0], [np.tan(shear_y_rad), 1, 0], [0, 0, 1]],
)
# 5. Translation
m_translate = np.array([[1, 0, translate["x"]], [0, 1, translate["y"]], [0, 0, 1]])
# 6. Shift back to center
m_shift_center = np.array([[1, 0, shift[0]], [0, 1, shift[1]], [0, 0, 1]])
# Combine all transformations
# The order is important: transformations are applied from right to left
m = m_shift_center @ m_translate @ m_shear @ m_rotate @ m_scale @ m_shift_topleft
# Ensure the last row is exactly [0, 0, 1]
m[2] = [0, 0, 1]
return m
def create_piecewise_affine_maps (image_shape, grid, scale, absolute_scale, random_generator)
[view source on GitHub]¶
Create maps for piecewise affine transformation using OpenCV's remap function.
Source code in albumentations/augmentations/geometric/functional.py
def create_piecewise_affine_maps(
image_shape: tuple[int, int],
grid: tuple[int, int],
scale: float,
absolute_scale: bool,
random_generator: np.random.Generator,
) -> tuple[np.ndarray | None, np.ndarray | None]:
"""Create maps for piecewise affine transformation using OpenCV's remap function."""
height, width = image_shape[:2]
nb_rows, nb_cols = grid
# Input validation
if height <= 0 or width <= 0 or nb_rows <= 0 or nb_cols <= 0:
raise ValueError("Dimensions must be positive")
if scale <= 0:
return None, None
# Create source points grid
y = np.linspace(0, height - 1, nb_rows, dtype=np.float32)
x = np.linspace(0, width - 1, nb_cols, dtype=np.float32)
xx_src, yy_src = np.meshgrid(x, y)
# Initialize destination maps at full resolution
map_x = np.zeros((height, width), dtype=np.float32)
map_y = np.zeros((height, width), dtype=np.float32)
# Generate jitter for control points
jitter_scale = scale / 3 if absolute_scale else scale * min(width, height) / 3
jitter = random_generator.normal(0, jitter_scale, (nb_rows, nb_cols, 2)).astype(
np.float32,
)
# Create control points with jitter
control_points = np.zeros((nb_rows * nb_cols, 4), dtype=np.float32)
for i in range(nb_rows):
for j in range(nb_cols):
idx = i * nb_cols + j
# Source points
control_points[idx, 0] = xx_src[i, j]
control_points[idx, 1] = yy_src[i, j]
# Destination points with jitter
control_points[idx, 2] = np.clip(
xx_src[i, j] + jitter[i, j, 1],
0,
width - 1,
)
control_points[idx, 3] = np.clip(
yy_src[i, j] + jitter[i, j, 0],
0,
height - 1,
)
# Create full resolution maps
for i in range(height):
for j in range(width):
# Find nearest control points and interpolate
dx = j - control_points[:, 0]
dy = i - control_points[:, 1]
dist = dx * dx + dy * dy
weights = 1 / (dist + 1e-8)
weights = weights / np.sum(weights)
map_x[i, j] = np.sum(weights * control_points[:, 2])
map_y[i, j] = np.sum(weights * control_points[:, 3])
# Ensure output is within bounds
map_x = np.clip(map_x, 0, width - 1, out=map_x)
map_y = np.clip(map_y, 0, height - 1, out=map_y)
return map_x, map_y
def create_shape_groups (tiles)
[view source on GitHub]¶
Groups tiles by their shape and stores the indices for each shape.
Source code in albumentations/augmentations/geometric/functional.py
def create_shape_groups(tiles: np.ndarray) -> dict[tuple[int, int], list[int]]:
"""Groups tiles by their shape and stores the indices for each shape."""
shape_groups = defaultdict(list)
for index, (start_y, start_x, end_y, end_x) in enumerate(tiles):
shape = (end_y - start_y, end_x - start_x)
shape_groups[shape].append(index)
return shape_groups
def d4 (img, group_member)
[view source on GitHub]¶
Applies a D_4
symmetry group transformation to an image array.
This function manipulates an image using transformations such as rotations and flips, corresponding to the D_4
dihedral group symmetry operations. Each transformation is identified by a unique group member code.
- img (np.ndarray): The input image array to transform.
- group_member (D4Type): A string identifier indicating the specific transformation to apply. Valid codes include:
- 'e': Identity (no transformation).
- 'r90': Rotate 90 degrees counterclockwise.
- 'r180': Rotate 180 degrees.
- 'r270': Rotate 270 degrees counterclockwise.
- 'v': Vertical flip.
- 'hvt': Transpose over second diagonal
- 'h': Horizontal flip.
- 't': Transpose (reflect over the main diagonal).
- np.ndarray: The transformed image array.
- ValueError: If an invalid group member is specified.
Examples:
- Rotating an image by 90 degrees:
transformed_image = d4(original_image, 'r90')
- Applying a horizontal flip to an image:
transformed_image = d4(original_image, 'h')
Source code in albumentations/augmentations/geometric/functional.py
def d4(img: np.ndarray, group_member: D4Type) -> np.ndarray:
"""Applies a `D_4` symmetry group transformation to an image array.
This function manipulates an image using transformations such as rotations and flips,
corresponding to the `D_4` dihedral group symmetry operations.
Each transformation is identified by a unique group member code.
Parameters:
- img (np.ndarray): The input image array to transform.
- group_member (D4Type): A string identifier indicating the specific transformation to apply. Valid codes include:
- 'e': Identity (no transformation).
- 'r90': Rotate 90 degrees counterclockwise.
- 'r180': Rotate 180 degrees.
- 'r270': Rotate 270 degrees counterclockwise.
- 'v': Vertical flip.
- 'hvt': Transpose over second diagonal
- 'h': Horizontal flip.
- 't': Transpose (reflect over the main diagonal).
Returns:
- np.ndarray: The transformed image array.
Raises:
- ValueError: If an invalid group member is specified.
Examples:
- Rotating an image by 90 degrees:
`transformed_image = d4(original_image, 'r90')`
- Applying a horizontal flip to an image:
`transformed_image = d4(original_image, 'h')`
"""
transformations = {
"e": lambda x: x, # Identity transformation
"r90": lambda x: rot90(x, 1), # Rotate 90 degrees
"r180": lambda x: rot90(x, 2), # Rotate 180 degrees
"r270": lambda x: rot90(x, 3), # Rotate 270 degrees
"v": vflip, # Vertical flip
"hvt": lambda x: transpose(rot90(x, 2)), # Reflect over anti-diagonal
"h": hflip, # Horizontal flip
"t": transpose, # Transpose (reflect over main diagonal)
}
# Execute the appropriate transformation
if group_member in transformations:
return transformations[group_member](img)
raise ValueError(f"Invalid group member: {group_member}")
def distort_image (image, generated_mesh, interpolation)
[view source on GitHub]¶
Apply perspective distortion to an image based on a generated mesh.
This function applies a perspective transformation to each cell of the image defined by the generated mesh. The distortion is applied using OpenCV's perspective transformation and blending techniques.
Parameters:
Name | Type | Description |
---|---|---|
image | np.ndarray | The input image to be distorted. Can be a 2D grayscale image or a 3D color image. |
generated_mesh | np.ndarray | A 2D array where each row represents a quadrilateral cell as [x1, y1, x2, y2, dst_x1, dst_y1, dst_x2, dst_y2, dst_x3, dst_y3, dst_x4, dst_y4]. The first four values define the source rectangle, and the last eight values define the destination quadrilateral. |
interpolation | int | Interpolation method to be used in the perspective transformation. Should be one of the OpenCV interpolation flags (e.g., cv2.INTER_LINEAR). |
Returns:
Type | Description |
---|---|
np.ndarray | The distorted image with the same shape and dtype as the input image. |
Note
- The function preserves the channel dimension of the input image.
- Each cell of the generated mesh is transformed independently and then blended into the output image.
- The distortion is applied using perspective transformation, which allows for more complex distortions compared to affine transformations.
Examples:
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
>>> mesh = np.array([[0, 0, 50, 50, 5, 5, 45, 5, 45, 45, 5, 45]])
>>> distorted = distort_image(image, mesh, cv2.INTER_LINEAR)
>>> distorted.shape
(100, 100, 3)
Source code in albumentations/augmentations/geometric/functional.py
@preserve_channel_dim
def distort_image(
image: np.ndarray,
generated_mesh: np.ndarray,
interpolation: int,
) -> np.ndarray:
"""Apply perspective distortion to an image based on a generated mesh.
This function applies a perspective transformation to each cell of the image defined by the
generated mesh. The distortion is applied using OpenCV's perspective transformation and
blending techniques.
Args:
image (np.ndarray): The input image to be distorted. Can be a 2D grayscale image or a
3D color image.
generated_mesh (np.ndarray): A 2D array where each row represents a quadrilateral cell
as [x1, y1, x2, y2, dst_x1, dst_y1, dst_x2, dst_y2, dst_x3, dst_y3, dst_x4, dst_y4].
The first four values define the source rectangle, and the last eight values
define the destination quadrilateral.
interpolation (int): Interpolation method to be used in the perspective transformation.
Should be one of the OpenCV interpolation flags (e.g., cv2.INTER_LINEAR).
Returns:
np.ndarray: The distorted image with the same shape and dtype as the input image.
Note:
- The function preserves the channel dimension of the input image.
- Each cell of the generated mesh is transformed independently and then blended into the output image.
- The distortion is applied using perspective transformation, which allows for more complex
distortions compared to affine transformations.
Example:
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
>>> mesh = np.array([[0, 0, 50, 50, 5, 5, 45, 5, 45, 45, 5, 45]])
>>> distorted = distort_image(image, mesh, cv2.INTER_LINEAR)
>>> distorted.shape
(100, 100, 3)
"""
distorted_image = np.zeros_like(image)
for mesh in generated_mesh:
# Extract source rectangle and destination quadrilateral
x1, y1, x2, y2 = mesh[:4] # Source rectangle
dst_quad = mesh[4:].reshape(4, 2) # Destination quadrilateral
# Convert source rectangle to quadrilateral
src_quad = np.array(
[
[x1, y1], # Top-left
[x2, y1], # Top-right
[x2, y2], # Bottom-right
[x1, y2], # Bottom-left
],
dtype=np.float32,
)
# Calculate Perspective transformation matrix
perspective_mat = cv2.getPerspectiveTransform(src_quad, dst_quad)
# Apply Perspective transformation
warped = cv2.warpPerspective(
image,
perspective_mat,
(image.shape[1], image.shape[0]),
flags=interpolation,
)
# Create mask for the transformed region
mask = np.zeros(image.shape[:2], dtype=np.uint8)
cv2.fillConvexPoly(mask, np.int32(dst_quad), 255)
# Copy only the warped quadrilateral area to the output image
distorted_image = cv2.copyTo(warped, mask, distorted_image)
return distorted_image
def find_keypoint (position, distance_map, threshold, inverted)
[view source on GitHub]¶
Determine if a valid keypoint can be found at the given position.
Source code in albumentations/augmentations/geometric/functional.py
def find_keypoint(
position: tuple[int, int],
distance_map: np.ndarray,
threshold: float | None,
inverted: bool,
) -> tuple[float, float] | None:
"""Determine if a valid keypoint can be found at the given position."""
y, x = position
value = distance_map[y, x]
if not inverted and threshold is not None and value >= threshold:
return None
if inverted and threshold is not None and value <= threshold:
return None
return float(x), float(y)
def flip_bboxes (bboxes, flip_horizontal=False, flip_vertical=False, image_shape=(0, 0))
[view source on GitHub]¶
Flip bounding boxes horizontally and/or vertically.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | Array of bounding boxes with shape (n, m) where each row is [x_min, y_min, x_max, y_max, ...]. |
flip_horizontal | bool | Whether to flip horizontally. |
flip_vertical | bool | Whether to flip vertically. |
image_shape | tuple[int, int] | Shape of the image as (height, width). |
Returns:
Type | Description |
---|---|
np.ndarray | Flipped bounding boxes. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def flip_bboxes(
bboxes: np.ndarray,
flip_horizontal: bool = False,
flip_vertical: bool = False,
image_shape: tuple[int, int] = (0, 0),
) -> np.ndarray:
"""Flip bounding boxes horizontally and/or vertically.
Args:
bboxes (np.ndarray): Array of bounding boxes with shape (n, m) where each row is
[x_min, y_min, x_max, y_max, ...].
flip_horizontal (bool): Whether to flip horizontally.
flip_vertical (bool): Whether to flip vertically.
image_shape (tuple[int, int]): Shape of the image as (height, width).
Returns:
np.ndarray: Flipped bounding boxes.
"""
rows, cols = image_shape[:2]
flipped_bboxes = bboxes.copy()
if flip_horizontal:
flipped_bboxes[:, [0, 2]] = cols - flipped_bboxes[:, [2, 0]]
if flip_vertical:
flipped_bboxes[:, [1, 3]] = rows - flipped_bboxes[:, [3, 1]]
return flipped_bboxes
def from_distance_maps (distance_maps, inverted, if_not_found_coords=None, threshold=None)
[view source on GitHub]¶
Convert distance maps back to keypoints coordinates.
This function is the inverse of to_distance_maps
. It takes distance maps generated for a set of keypoints and reconstructs the original keypoint coordinates. The function supports both regular and inverted distance maps, and can handle cases where keypoints are not found or fall outside a specified threshold.
Parameters:
Name | Type | Description |
---|---|---|
distance_maps | np.ndarray | A 3D numpy array of shape (height, width, nb_keypoints) containing distance maps for each keypoint. Each channel represents the distance map for one keypoint. |
inverted | bool | If True, treats the distance maps as inverted (where higher values indicate closer proximity to keypoints). If False, treats them as regular distance maps (where lower values indicate closer proximity). |
if_not_found_coords | Sequence[int] | dict[str, Any] | None | Coordinates to use for keypoints that are not found or fall outside the threshold. Can be: - None: Drop keypoints that are not found. - Sequence of two integers: Use these as (x, y) coordinates for not found keypoints. - Dict with 'x' and 'y' keys: Use these values for not found keypoints. Defaults to None. |
threshold | float | None | A threshold value to determine valid keypoints. For inverted maps, values >= threshold are considered valid. For regular maps, values <= threshold are considered valid. If None, all keypoints are considered valid. Defaults to None. |
Returns:
Type | Description |
---|---|
np.ndarray | A 2D numpy array of shape (nb_keypoints, 2) containing the (x, y) coordinates of the reconstructed keypoints. If |
Exceptions:
Type | Description |
---|---|
ValueError | If the input |
Notes
- The function uses vectorized operations for improved performance, especially with large numbers of keypoints.
- When
threshold
is None, all keypoints are considered valid, andif_not_found_coords
is not used. - The function assumes that the input distance maps are properly normalized and scaled according to the original image dimensions.
Examples:
>>> distance_maps = np.random.rand(100, 100, 3) # 3 keypoints
>>> inverted = True
>>> if_not_found_coords = [0, 0]
>>> threshold = 0.5
>>> keypoints = from_distance_maps(distance_maps, inverted, if_not_found_coords, threshold)
>>> print(keypoints.shape)
(3, 2)
Source code in albumentations/augmentations/geometric/functional.py
def from_distance_maps(
distance_maps: np.ndarray,
inverted: bool,
if_not_found_coords: Sequence[int] | dict[str, Any] | None = None,
threshold: float | None = None,
) -> np.ndarray:
"""Convert distance maps back to keypoints coordinates.
This function is the inverse of `to_distance_maps`. It takes distance maps generated for a set of keypoints
and reconstructs the original keypoint coordinates. The function supports both regular and inverted distance maps,
and can handle cases where keypoints are not found or fall outside a specified threshold.
Args:
distance_maps (np.ndarray): A 3D numpy array of shape (height, width, nb_keypoints) containing
distance maps for each keypoint. Each channel represents the distance map for one keypoint.
inverted (bool): If True, treats the distance maps as inverted (where higher values indicate
closer proximity to keypoints). If False, treats them as regular distance maps (where lower
values indicate closer proximity).
if_not_found_coords (Sequence[int] | dict[str, Any] | None, optional): Coordinates to use for
keypoints that are not found or fall outside the threshold. Can be:
- None: Drop keypoints that are not found.
- Sequence of two integers: Use these as (x, y) coordinates for not found keypoints.
- Dict with 'x' and 'y' keys: Use these values for not found keypoints.
Defaults to None.
threshold (float | None, optional): A threshold value to determine valid keypoints. For inverted
maps, values >= threshold are considered valid. For regular maps, values <= threshold are
considered valid. If None, all keypoints are considered valid. Defaults to None.
Returns:
np.ndarray: A 2D numpy array of shape (nb_keypoints, 2) containing the (x, y) coordinates
of the reconstructed keypoints. If `drop_if_not_found` is True (derived from if_not_found_coords),
the output may have fewer rows than input keypoints.
Raises:
ValueError: If the input `distance_maps` is not a 3D array.
Notes:
- The function uses vectorized operations for improved performance, especially with large numbers of keypoints.
- When `threshold` is None, all keypoints are considered valid, and `if_not_found_coords` is not used.
- The function assumes that the input distance maps are properly normalized and scaled according to the
original image dimensions.
Example:
>>> distance_maps = np.random.rand(100, 100, 3) # 3 keypoints
>>> inverted = True
>>> if_not_found_coords = [0, 0]
>>> threshold = 0.5
>>> keypoints = from_distance_maps(distance_maps, inverted, if_not_found_coords, threshold)
>>> print(keypoints.shape)
(3, 2)
"""
if distance_maps.ndim != NUM_MULTI_CHANNEL_DIMENSIONS:
msg = f"Expected three-dimensional input, got {distance_maps.ndim} dimensions and shape {distance_maps.shape}."
raise ValueError(msg)
height, width, nb_keypoints = distance_maps.shape
drop_if_not_found, if_not_found_x, if_not_found_y = validate_if_not_found_coords(
if_not_found_coords,
)
# Find the indices of max/min values for all keypoints at once
if inverted:
hitidx_flat = np.argmax(
distance_maps.reshape(height * width, nb_keypoints),
axis=0,
)
else:
hitidx_flat = np.argmin(
distance_maps.reshape(height * width, nb_keypoints),
axis=0,
)
# Convert flat indices to 2D coordinates
hitidx_y, hitidx_x = np.unravel_index(hitidx_flat, (height, width))
# Create keypoints array
keypoints = np.column_stack((hitidx_x, hitidx_y)).astype(float)
if threshold is not None:
# Check threshold condition
if inverted:
valid_mask = distance_maps[hitidx_y, hitidx_x, np.arange(nb_keypoints)] >= threshold
else:
valid_mask = distance_maps[hitidx_y, hitidx_x, np.arange(nb_keypoints)] <= threshold
if not drop_if_not_found:
# Replace invalid keypoints with if_not_found_coords
keypoints[~valid_mask] = [if_not_found_x, if_not_found_y]
else:
# Keep only valid keypoints
return keypoints[valid_mask]
return keypoints
def generate_displacement_fields (image_shape, alpha, sigma, same_dxdy, kernel_size, random_generator, noise_distribution)
[view source on GitHub]¶
Generate displacement fields for elastic transform.
Parameters:
Name | Type | Description |
---|---|---|
image_shape | tuple[int, int] | Shape of the image (height, width) |
alpha | float | Scaling factor for displacement |
sigma | float | Standard deviation for Gaussian blur |
same_dxdy | bool | Whether to use same displacement field for both directions |
kernel_size | tuple[int, int] | Size of Gaussian blur kernel |
random_generator | np.random.Generator | NumPy random number generator |
noise_distribution | Literal['gaussian', 'uniform'] | Type of noise distribution to use ("gaussian" or "uniform") |
Returns:
Type | Description |
---|---|
tuple | (dx, dy) displacement fields |
Source code in albumentations/augmentations/geometric/functional.py
def generate_displacement_fields(
image_shape: tuple[int, int],
alpha: float,
sigma: float,
same_dxdy: bool,
kernel_size: tuple[int, int],
random_generator: np.random.Generator,
noise_distribution: Literal["gaussian", "uniform"],
) -> tuple[np.ndarray, np.ndarray]:
"""Generate displacement fields for elastic transform.
Args:
image_shape: Shape of the image (height, width)
alpha: Scaling factor for displacement
sigma: Standard deviation for Gaussian blur
same_dxdy: Whether to use same displacement field for both directions
kernel_size: Size of Gaussian blur kernel
random_generator: NumPy random number generator
noise_distribution: Type of noise distribution to use ("gaussian" or "uniform")
Returns:
tuple: (dx, dy) displacement fields
"""
def generate_noise_field() -> np.ndarray:
# Generate noise based on distribution type
if noise_distribution == "gaussian":
field = random_generator.standard_normal(size=image_shape[:2])
else: # uniform
field = random_generator.uniform(low=-1, high=1, size=image_shape[:2])
# Common operations for both distributions
field = field.astype(np.float32)
cv2.GaussianBlur(field, kernel_size, sigma, dst=field)
return field * alpha
# Generate first displacement field
dx = generate_noise_field()
# Generate or copy second displacement field
dy = dx if same_dxdy else generate_noise_field()
return dx, dy
def generate_distorted_grid_polygons (dimensions, magnitude, random_generator)
[view source on GitHub]¶
Generate distorted grid polygons based on input dimensions and magnitude.
This function creates a grid of polygons and applies random distortions to the internal vertices, while keeping the boundary vertices fixed. The distortion is applied consistently across shared vertices to avoid gaps or overlaps in the resulting grid.
Parameters:
Name | Type | Description |
---|---|---|
dimensions | np.ndarray | A 3D array of shape (grid_height, grid_width, 4) where each element is [x_min, y_min, x_max, y_max] representing the dimensions of a grid cell. |
magnitude | int | Maximum pixel-wise displacement for distortion. The actual displacement will be randomly chosen in the range [-magnitude, magnitude]. |
random_generator | np.random.Generator | A random number generator. |
Returns:
Type | Description |
---|---|
np.ndarray | A 2D array of shape (total_cells, 8) where each row represents a distorted polygon as [x1, y1, x2, y1, x2, y2, x1, y2]. The total_cells is equal to grid_height * grid_width. |
Note
- Only internal grid points are distorted; boundary points remain fixed.
- The function ensures consistent distortion across shared vertices of adjacent cells.
- The distortion is applied to the following points of each internal cell:
- Bottom-right of the cell above and to the left
- Bottom-left of the cell above
- Top-right of the cell to the left
- Top-left of the current cell
- Each square represents a cell, and the X marks indicate the coordinates where displacement occurs. +--+--+--+--+ | | | | | +--X--X--X--+ | | | | | +--X--X--X--+ | | | | | +--X--X--X--+ | | | | | +--+--+--+--+
- For each X, the coordinates of the left, right, top, and bottom edges in the four adjacent cells are displaced.
Examples:
>>> dimensions = np.array([[[0, 0, 50, 50], [50, 0, 100, 50]],
... [[0, 50, 50, 100], [50, 50, 100, 100]]])
>>> distorted = generate_distorted_grid_polygons(dimensions, magnitude=10)
>>> distorted.shape
(4, 8)
Source code in albumentations/augmentations/geometric/functional.py
def generate_distorted_grid_polygons(
dimensions: np.ndarray,
magnitude: int,
random_generator: np.random.Generator,
) -> np.ndarray:
"""Generate distorted grid polygons based on input dimensions and magnitude.
This function creates a grid of polygons and applies random distortions to the internal vertices,
while keeping the boundary vertices fixed. The distortion is applied consistently across shared
vertices to avoid gaps or overlaps in the resulting grid.
Args:
dimensions (np.ndarray): A 3D array of shape (grid_height, grid_width, 4) where each element
is [x_min, y_min, x_max, y_max] representing the dimensions of a grid cell.
magnitude (int): Maximum pixel-wise displacement for distortion. The actual displacement
will be randomly chosen in the range [-magnitude, magnitude].
random_generator (np.random.Generator): A random number generator.
Returns:
np.ndarray: A 2D array of shape (total_cells, 8) where each row represents a distorted polygon
as [x1, y1, x2, y1, x2, y2, x1, y2]. The total_cells is equal to grid_height * grid_width.
Note:
- Only internal grid points are distorted; boundary points remain fixed.
- The function ensures consistent distortion across shared vertices of adjacent cells.
- The distortion is applied to the following points of each internal cell:
* Bottom-right of the cell above and to the left
* Bottom-left of the cell above
* Top-right of the cell to the left
* Top-left of the current cell
- Each square represents a cell, and the X marks indicate the coordinates where displacement occurs.
+--+--+--+--+
| | | | |
+--X--X--X--+
| | | | |
+--X--X--X--+
| | | | |
+--X--X--X--+
| | | | |
+--+--+--+--+
- For each X, the coordinates of the left, right, top, and bottom edges
in the four adjacent cells are displaced.
Example:
>>> dimensions = np.array([[[0, 0, 50, 50], [50, 0, 100, 50]],
... [[0, 50, 50, 100], [50, 50, 100, 100]]])
>>> distorted = generate_distorted_grid_polygons(dimensions, magnitude=10)
>>> distorted.shape
(4, 8)
"""
grid_height, grid_width = dimensions.shape[:2]
total_cells = grid_height * grid_width
# Initialize polygons
polygons = np.zeros((total_cells, 8), dtype=np.float32)
polygons[:, 0:2] = dimensions.reshape(-1, 4)[:, [0, 1]] # x1, y1
polygons[:, 2:4] = dimensions.reshape(-1, 4)[:, [2, 1]] # x2, y1
polygons[:, 4:6] = dimensions.reshape(-1, 4)[:, [2, 3]] # x2, y2
polygons[:, 6:8] = dimensions.reshape(-1, 4)[:, [0, 3]] # x1, y2
# Generate displacements for internal grid points only
internal_points_height, internal_points_width = grid_height - 1, grid_width - 1
displacements = random_generator.integers(
-magnitude,
magnitude + 1,
size=(internal_points_height, internal_points_width, 2),
).astype(np.float32)
# Apply displacements to internal polygon vertices
for i in range(1, grid_height):
for j in range(1, grid_width):
dx, dy = displacements[i - 1, j - 1]
# Bottom-right of cell (i-1, j-1)
polygons[(i - 1) * grid_width + (j - 1), 4:6] += [dx, dy]
# Bottom-left of cell (i-1, j)
polygons[(i - 1) * grid_width + j, 6:8] += [dx, dy]
# Top-right of cell (i, j-1)
polygons[i * grid_width + (j - 1), 2:4] += [dx, dy]
# Top-left of cell (i, j)
polygons[i * grid_width + j, 0:2] += [dx, dy]
return polygons
def generate_grid (image_shape, steps_x, steps_y, num_steps)
[view source on GitHub]¶
Generate a distorted grid for image transformation based on given step sizes.
This function creates two 2D arrays (map_x and map_y) that represent a distorted version of the original image grid. These arrays can be used with OpenCV's remap function to apply grid distortion to an image.
Parameters:
Name | Type | Description |
---|---|---|
image_shape | tuple[int, int] | The shape of the image as (height, width). |
steps_x | list[float] | List of step sizes for the x-axis distortion. The length should be num_steps + 1. Each value represents the relative step size for a segment of the grid in the x direction. |
steps_y | list[float] | List of step sizes for the y-axis distortion. The length should be num_steps + 1. Each value represents the relative step size for a segment of the grid in the y direction. |
num_steps | int | The number of steps to divide each axis into. This determines the granularity of the distortion grid. |
Returns:
Type | Description |
---|---|
tuple[np.ndarray, np.ndarray] | A tuple containing two 2D numpy arrays: - map_x: A 2D array of float32 values representing the x-coordinates of the distorted grid. - map_y: A 2D array of float32 values representing the y-coordinates of the distorted grid. |
Note
- The function generates a grid where each cell can be distorted independently.
- The distortion is controlled by the steps_x and steps_y parameters, which determine how much each grid line is shifted.
- The resulting map_x and map_y can be used directly with cv2.remap() to apply the distortion to an image.
- The distortion is applied smoothly across each grid cell using linear interpolation.
Examples:
>>> image_shape = (100, 100)
>>> steps_x = [1.1, 0.9, 1.0, 1.2, 0.95, 1.05]
>>> steps_y = [0.9, 1.1, 1.0, 1.1, 0.9, 1.0]
>>> num_steps = 5
>>> map_x, map_y = generate_grid(image_shape, steps_x, steps_y, num_steps)
>>> distorted_image = cv2.remap(image, map_x, map_y, cv2.INTER_LINEAR)
Source code in albumentations/augmentations/geometric/functional.py
def generate_grid(
image_shape: tuple[int, int],
steps_x: list[float],
steps_y: list[float],
num_steps: int,
) -> tuple[np.ndarray, np.ndarray]:
"""Generate a distorted grid for image transformation based on given step sizes.
This function creates two 2D arrays (map_x and map_y) that represent a distorted version
of the original image grid. These arrays can be used with OpenCV's remap function to
apply grid distortion to an image.
Args:
image_shape (tuple[int, int]): The shape of the image as (height, width).
steps_x (list[float]): List of step sizes for the x-axis distortion. The length
should be num_steps + 1. Each value represents the relative step size for
a segment of the grid in the x direction.
steps_y (list[float]): List of step sizes for the y-axis distortion. The length
should be num_steps + 1. Each value represents the relative step size for
a segment of the grid in the y direction.
num_steps (int): The number of steps to divide each axis into. This determines
the granularity of the distortion grid.
Returns:
tuple[np.ndarray, np.ndarray]: A tuple containing two 2D numpy arrays:
- map_x: A 2D array of float32 values representing the x-coordinates
of the distorted grid.
- map_y: A 2D array of float32 values representing the y-coordinates
of the distorted grid.
Note:
- The function generates a grid where each cell can be distorted independently.
- The distortion is controlled by the steps_x and steps_y parameters, which
determine how much each grid line is shifted.
- The resulting map_x and map_y can be used directly with cv2.remap() to
apply the distortion to an image.
- The distortion is applied smoothly across each grid cell using linear
interpolation.
Example:
>>> image_shape = (100, 100)
>>> steps_x = [1.1, 0.9, 1.0, 1.2, 0.95, 1.05]
>>> steps_y = [0.9, 1.1, 1.0, 1.1, 0.9, 1.0]
>>> num_steps = 5
>>> map_x, map_y = generate_grid(image_shape, steps_x, steps_y, num_steps)
>>> distorted_image = cv2.remap(image, map_x, map_y, cv2.INTER_LINEAR)
"""
height, width = image_shape[:2]
x_step = width // num_steps
xx = np.zeros(width, np.float32)
prev = 0.0
for idx, step in enumerate(steps_x):
x = idx * x_step
start = int(x)
end = min(int(x) + x_step, width)
cur = prev + x_step * step
xx[start:end] = np.linspace(prev, cur, end - start)
prev = cur
y_step = height // num_steps
yy = np.zeros(height, np.float32)
prev = 0.0
for idx, step in enumerate(steps_y):
y = idx * y_step
start = int(y)
end = min(int(y) + y_step, height)
cur = prev + y_step * step
yy[start:end] = np.linspace(prev, cur, end - start)
prev = cur
return np.meshgrid(xx, yy)
def generate_reflected_bboxes (bboxes, grid_dims, image_shape, center_in_origin=False)
[view source on GitHub]¶
Generate reflected bounding boxes for the entire reflection grid.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | Original bounding boxes. |
grid_dims | dict[str, tuple[int, int]] | Grid dimensions and original position. |
image_shape | tuple[int, int] | Shape of the original image as (height, width). |
center_in_origin | bool | If True, center the grid at the origin. Default is False. |
Returns:
Type | Description |
---|---|
np.ndarray | Array of reflected and shifted bounding boxes for the entire grid. |
Source code in albumentations/augmentations/geometric/functional.py
def generate_reflected_bboxes(
bboxes: np.ndarray,
grid_dims: dict[str, tuple[int, int]],
image_shape: tuple[int, int],
center_in_origin: bool = False,
) -> np.ndarray:
"""Generate reflected bounding boxes for the entire reflection grid.
Args:
bboxes (np.ndarray): Original bounding boxes.
grid_dims (dict[str, tuple[int, int]]): Grid dimensions and original position.
image_shape (tuple[int, int]): Shape of the original image as (height, width).
center_in_origin (bool): If True, center the grid at the origin. Default is False.
Returns:
np.ndarray: Array of reflected and shifted bounding boxes for the entire grid.
"""
rows, cols = image_shape[:2]
grid_rows, grid_cols = grid_dims["grid_shape"]
original_row, original_col = grid_dims["original_position"]
# Prepare flipped versions of bboxes
bboxes_hflipped = flip_bboxes(bboxes, flip_horizontal=True, image_shape=image_shape)
bboxes_vflipped = flip_bboxes(bboxes, flip_vertical=True, image_shape=image_shape)
bboxes_hvflipped = flip_bboxes(
bboxes,
flip_horizontal=True,
flip_vertical=True,
image_shape=image_shape,
)
# Shift all versions to the original position
shift_vector = np.array(
[
original_col * cols,
original_row * rows,
original_col * cols,
original_row * rows,
],
)
bboxes = shift_bboxes(bboxes, shift_vector)
bboxes_hflipped = shift_bboxes(bboxes_hflipped, shift_vector)
bboxes_vflipped = shift_bboxes(bboxes_vflipped, shift_vector)
bboxes_hvflipped = shift_bboxes(bboxes_hvflipped, shift_vector)
new_bboxes = []
for grid_row in range(grid_rows):
for grid_col in range(grid_cols):
# Determine which version of bboxes to use based on grid position
if (grid_row - original_row) % 2 == 0 and (grid_col - original_col) % 2 == 0:
current_bboxes = bboxes
elif (grid_row - original_row) % 2 == 0:
current_bboxes = bboxes_hflipped
elif (grid_col - original_col) % 2 == 0:
current_bboxes = bboxes_vflipped
else:
current_bboxes = bboxes_hvflipped
# Shift to the current grid cell
cell_shift = np.array(
[
(grid_col - original_col) * cols,
(grid_row - original_row) * rows,
(grid_col - original_col) * cols,
(grid_row - original_row) * rows,
],
)
shifted_bboxes = shift_bboxes(current_bboxes, cell_shift)
new_bboxes.append(shifted_bboxes)
result = np.vstack(new_bboxes)
return shift_bboxes(result, -shift_vector) if center_in_origin else result
def generate_reflected_keypoints (keypoints, grid_dims, image_shape, center_in_origin=False)
[view source on GitHub]¶
Generate reflected keypoints for the entire reflection grid.
This function creates a grid of keypoints by reflecting and shifting the original keypoints. It handles both centered and non-centered grids based on the center_in_origin
parameter.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | Original keypoints array of shape (N, 4+), where N is the number of keypoints, and each keypoint is represented by at least 4 values (x, y, angle, scale, ...). |
grid_dims | dict[str, tuple[int, int]] | A dictionary containing grid dimensions and original position. It should have the following keys: - "grid_shape": tuple[int, int] representing (grid_rows, grid_cols) - "original_position": tuple[int, int] representing (original_row, original_col) |
image_shape | tuple[int, int] | Shape of the original image as (height, width). |
center_in_origin | bool | If True, center the grid at the origin. Default is False. |
Returns:
Type | Description |
---|---|
np.ndarray | Array of reflected and shifted keypoints for the entire grid. The shape is (N * grid_rows * grid_cols, 4+), where N is the number of original keypoints. |
Note
- The function handles keypoint flipping and shifting to create a grid of reflected keypoints.
- It preserves the angle and scale information of the keypoints during transformations.
- The resulting grid can be either centered at the origin or positioned based on the original grid.
Source code in albumentations/augmentations/geometric/functional.py
def generate_reflected_keypoints(
keypoints: np.ndarray,
grid_dims: dict[str, tuple[int, int]],
image_shape: tuple[int, int],
center_in_origin: bool = False,
) -> np.ndarray:
"""Generate reflected keypoints for the entire reflection grid.
This function creates a grid of keypoints by reflecting and shifting the original keypoints.
It handles both centered and non-centered grids based on the `center_in_origin` parameter.
Args:
keypoints (np.ndarray): Original keypoints array of shape (N, 4+), where N is the number of keypoints,
and each keypoint is represented by at least 4 values (x, y, angle, scale, ...).
grid_dims (dict[str, tuple[int, int]]): A dictionary containing grid dimensions and original position.
It should have the following keys:
- "grid_shape": tuple[int, int] representing (grid_rows, grid_cols)
- "original_position": tuple[int, int] representing (original_row, original_col)
image_shape (tuple[int, int]): Shape of the original image as (height, width).
center_in_origin (bool, optional): If True, center the grid at the origin. Default is False.
Returns:
np.ndarray: Array of reflected and shifted keypoints for the entire grid. The shape is
(N * grid_rows * grid_cols, 4+), where N is the number of original keypoints.
Note:
- The function handles keypoint flipping and shifting to create a grid of reflected keypoints.
- It preserves the angle and scale information of the keypoints during transformations.
- The resulting grid can be either centered at the origin or positioned based on the original grid.
"""
grid_rows, grid_cols = grid_dims["grid_shape"]
original_row, original_col = grid_dims["original_position"]
# Prepare flipped versions of keypoints
keypoints_hflipped = flip_keypoints(
keypoints,
flip_horizontal=True,
image_shape=image_shape,
)
keypoints_vflipped = flip_keypoints(
keypoints,
flip_vertical=True,
image_shape=image_shape,
)
keypoints_hvflipped = flip_keypoints(
keypoints,
flip_horizontal=True,
flip_vertical=True,
image_shape=image_shape,
)
rows, cols = image_shape[:2]
# Shift all versions to the original position
shift_vector = np.array(
[original_col * cols, original_row * rows, 0, 0],
) # Only shift x and y
keypoints = shift_keypoints(keypoints, shift_vector)
keypoints_hflipped = shift_keypoints(keypoints_hflipped, shift_vector)
keypoints_vflipped = shift_keypoints(keypoints_vflipped, shift_vector)
keypoints_hvflipped = shift_keypoints(keypoints_hvflipped, shift_vector)
new_keypoints = []
for grid_row in range(grid_rows):
for grid_col in range(grid_cols):
# Determine which version of keypoints to use based on grid position
if (grid_row - original_row) % 2 == 0 and (grid_col - original_col) % 2 == 0:
current_keypoints = keypoints
elif (grid_row - original_row) % 2 == 0:
current_keypoints = keypoints_hflipped
elif (grid_col - original_col) % 2 == 0:
current_keypoints = keypoints_vflipped
else:
current_keypoints = keypoints_hvflipped
# Shift to the current grid cell
cell_shift = np.array(
[
(grid_col - original_col) * cols,
(grid_row - original_row) * rows,
0,
0,
],
)
shifted_keypoints = shift_keypoints(current_keypoints, cell_shift)
new_keypoints.append(shifted_keypoints)
result = np.vstack(new_keypoints)
return shift_keypoints(result, -shift_vector) if center_in_origin else result
def generate_shuffled_splits (size, divisions, random_generator)
[view source on GitHub]¶
Generate shuffled splits for a given dimension size and number of divisions.
Parameters:
Name | Type | Description |
---|---|---|
size | int | Total size of the dimension (height or width). |
divisions | int | Number of divisions (rows or columns). |
random_generator | np.random.Generator | None | The random generator to use for shuffling the splits. If None, the splits are not shuffled. |
Returns:
Type | Description |
---|---|
np.ndarray | Cumulative edges of the shuffled intervals. |
Source code in albumentations/augmentations/geometric/functional.py
def generate_shuffled_splits(
size: int,
divisions: int,
random_generator: np.random.Generator,
) -> np.ndarray:
"""Generate shuffled splits for a given dimension size and number of divisions.
Args:
size (int): Total size of the dimension (height or width).
divisions (int): Number of divisions (rows or columns).
random_generator (np.random.Generator | None): The random generator to use for shuffling the splits.
If None, the splits are not shuffled.
Returns:
np.ndarray: Cumulative edges of the shuffled intervals.
"""
intervals = almost_equal_intervals(size, divisions)
random_generator.shuffle(intervals)
return np.insert(np.cumsum(intervals), 0, 0)
def get_camera_matrix_distortion_maps (image_shape, k, center_xy)
[view source on GitHub]¶
Generate distortion maps using camera matrix model.
Parameters:
Name | Type | Description |
---|---|---|
image_shape | tuple[int, int] | Image shape |
k | float | Distortion coefficient |
center_xy | tuple[float, float] | Center of distortion |
Returns:
Type | Description |
---|---|
tuple of |
|
Source code in albumentations/augmentations/geometric/functional.py
def get_camera_matrix_distortion_maps(
image_shape: tuple[int, int],
k: float,
center_xy: tuple[float, float],
) -> tuple[np.ndarray, np.ndarray]:
"""Generate distortion maps using camera matrix model.
Args:
image_shape: Image shape
k: Distortion coefficient
center_xy: Center of distortion
Returns:
tuple of:
- map_x: Horizontal displacement map
- map_y: Vertical displacement map
"""
height, width = image_shape[:2]
camera_matrix = np.array(
[[width, 0, center_xy[0]], [0, height, center_xy[1]], [0, 0, 1]],
dtype=np.float32,
)
distortion = np.array([k, k, 0, 0, 0], dtype=np.float32)
return cv2.initUndistortRectifyMap(
camera_matrix,
distortion,
None,
None,
(width, height),
cv2.CV_32FC1,
)
def get_dimension_padding (current_size, min_size, divisor)
[view source on GitHub]¶
Calculate padding for a single dimension.
Parameters:
Name | Type | Description |
---|---|---|
current_size | int | Current size of the dimension |
min_size | int | None | Minimum size requirement, if any |
divisor | int | None | Divisor for padding to make size divisible, if any |
Returns:
Type | Description |
---|---|
tuple[int, int] | (pad_before, pad_after) |
Source code in albumentations/augmentations/geometric/functional.py
def get_dimension_padding(
current_size: int,
min_size: int | None,
divisor: int | None,
) -> tuple[int, int]:
"""Calculate padding for a single dimension.
Args:
current_size: Current size of the dimension
min_size: Minimum size requirement, if any
divisor: Divisor for padding to make size divisible, if any
Returns:
tuple[int, int]: (pad_before, pad_after)
"""
if min_size is not None:
if current_size < min_size:
pad_before = int((min_size - current_size) / 2.0)
pad_after = min_size - current_size - pad_before
return pad_before, pad_after
elif divisor is not None:
remainder = current_size % divisor
if remainder > 0:
total_pad = divisor - remainder
pad_before = total_pad // 2
pad_after = total_pad - pad_before
return pad_before, pad_after
return 0, 0
def get_fisheye_distortion_maps (image_shape, k, center_xy)
[view source on GitHub]¶
Generate distortion maps using fisheye model.
Parameters:
Name | Type | Description |
---|---|---|
image_shape | tuple[int, int] | Image shape |
k | float | Distortion coefficient |
center_xy | tuple[float, float] | Center of distortion |
Returns:
Type | Description |
---|---|
tuple of |
|
Source code in albumentations/augmentations/geometric/functional.py
def get_fisheye_distortion_maps(
image_shape: tuple[int, int],
k: float,
center_xy: tuple[float, float],
) -> tuple[np.ndarray, np.ndarray]:
"""Generate distortion maps using fisheye model.
Args:
image_shape: Image shape
k: Distortion coefficient
center_xy: Center of distortion
Returns:
tuple of:
- map_x: Horizontal displacement map
- map_y: Vertical displacement map
"""
height, width = image_shape[:2]
center_x, center_y = center_xy
# Create coordinate grid
y, x = np.mgrid[:height, :width].astype(np.float32)
x = x - center_x
y = y - center_y
# Calculate polar coordinates
r = np.sqrt(x * x + y * y)
theta = np.arctan2(y, x)
# Normalize radius by the maximum possible radius to keep distortion in check
max_radius = math.sqrt(max(center_x, width - center_x) ** 2 + max(center_y, height - center_y) ** 2)
r_norm = r / max_radius
# Apply fisheye distortion to normalized radius
r_dist = r * (1 + k * r_norm * r_norm)
# Convert back to cartesian coordinates
map_x = r_dist * np.cos(theta) + center_x
map_y = r_dist * np.sin(theta) + center_y
return map_x, map_y
def get_pad_grid_dimensions (pad_top, pad_bottom, pad_left, pad_right, image_shape)
[view source on GitHub]¶
Calculate the dimensions of the grid needed for reflection padding and the position of the original image.
Parameters:
Name | Type | Description |
---|---|---|
pad_top | int | Number of pixels to pad above the image. |
pad_bottom | int | Number of pixels to pad below the image. |
pad_left | int | Number of pixels to pad to the left of the image. |
pad_right | int | Number of pixels to pad to the right of the image. |
image_shape | tuple[int, int] | Shape of the original image as (height, width). |
Returns:
Type | Description |
---|---|
dict[str, tuple[int, int]] | A dictionary containing: - 'grid_shape': A tuple (grid_rows, grid_cols) where: - grid_rows (int): Number of times the image needs to be repeated vertically. - grid_cols (int): Number of times the image needs to be repeated horizontally. - 'original_position': A tuple (original_row, original_col) where: - original_row (int): Row index of the original image in the grid. - original_col (int): Column index of the original image in the grid. |
Source code in albumentations/augmentations/geometric/functional.py
def get_pad_grid_dimensions(
pad_top: int,
pad_bottom: int,
pad_left: int,
pad_right: int,
image_shape: tuple[int, int],
) -> dict[str, tuple[int, int]]:
"""Calculate the dimensions of the grid needed for reflection padding and the position of the original image.
Args:
pad_top (int): Number of pixels to pad above the image.
pad_bottom (int): Number of pixels to pad below the image.
pad_left (int): Number of pixels to pad to the left of the image.
pad_right (int): Number of pixels to pad to the right of the image.
image_shape (tuple[int, int]): Shape of the original image as (height, width).
Returns:
dict[str, tuple[int, int]]: A dictionary containing:
- 'grid_shape': A tuple (grid_rows, grid_cols) where:
- grid_rows (int): Number of times the image needs to be repeated vertically.
- grid_cols (int): Number of times the image needs to be repeated horizontally.
- 'original_position': A tuple (original_row, original_col) where:
- original_row (int): Row index of the original image in the grid.
- original_col (int): Column index of the original image in the grid.
"""
rows, cols = image_shape[:2]
grid_rows = 1 + math.ceil(pad_top / rows) + math.ceil(pad_bottom / rows)
grid_cols = 1 + math.ceil(pad_left / cols) + math.ceil(pad_right / cols)
original_row = math.ceil(pad_top / rows)
original_col = math.ceil(pad_left / cols)
return {
"grid_shape": (grid_rows, grid_cols),
"original_position": (original_row, original_col),
}
def get_padding_params (image_shape, min_height, min_width, pad_height_divisor, pad_width_divisor)
[view source on GitHub]¶
Calculate padding parameters based on target dimensions.
Parameters:
Name | Type | Description |
---|---|---|
image_shape | tuple[int, int] | (height, width) of the image |
min_height | int | None | Minimum height requirement, if any |
min_width | int | None | Minimum width requirement, if any |
pad_height_divisor | int | None | Divisor for height padding, if any |
pad_width_divisor | int | None | Divisor for width padding, if any |
Returns:
Type | Description |
---|---|
tuple[int, int, int, int] | (pad_top, pad_bottom, pad_left, pad_right) |
Source code in albumentations/augmentations/geometric/functional.py
def get_padding_params(
image_shape: tuple[int, int],
min_height: int | None,
min_width: int | None,
pad_height_divisor: int | None,
pad_width_divisor: int | None,
) -> tuple[int, int, int, int]:
"""Calculate padding parameters based on target dimensions.
Args:
image_shape: (height, width) of the image
min_height: Minimum height requirement, if any
min_width: Minimum width requirement, if any
pad_height_divisor: Divisor for height padding, if any
pad_width_divisor: Divisor for width padding, if any
Returns:
tuple[int, int, int, int]: (pad_top, pad_bottom, pad_left, pad_right)
"""
rows, cols = image_shape[:2]
h_pad_top, h_pad_bottom = get_dimension_padding(
rows,
min_height,
pad_height_divisor,
)
w_pad_left, w_pad_right = get_dimension_padding(cols, min_width, pad_width_divisor)
return h_pad_top, h_pad_bottom, w_pad_left, w_pad_right
def is_identity_matrix (matrix)
[view source on GitHub]¶
Check if the given matrix is an identity matrix.
Parameters:
Name | Type | Description |
---|---|---|
matrix | np.ndarray | A 3x3 affine transformation matrix. |
Returns:
Type | Description |
---|---|
bool | True if the matrix is an identity matrix, False otherwise. |
Source code in albumentations/augmentations/geometric/functional.py
def is_identity_matrix(matrix: np.ndarray) -> bool:
"""Check if the given matrix is an identity matrix.
Args:
matrix (np.ndarray): A 3x3 affine transformation matrix.
Returns:
bool: True if the matrix is an identity matrix, False otherwise.
"""
return np.allclose(matrix, np.eye(3, dtype=matrix.dtype))
def is_valid_component (component_area, original_area, min_area, min_visibility)
[view source on GitHub]¶
Validate if a component meets the minimum requirements.
Source code in albumentations/augmentations/geometric/functional.py
def is_valid_component(
component_area: float,
original_area: float,
min_area: float | None,
min_visibility: float | None,
) -> bool:
"""Validate if a component meets the minimum requirements."""
visibility = component_area / original_area
return (min_area is None or component_area >= min_area) and (min_visibility is None or visibility >= min_visibility)
def keypoints_affine (keypoints, matrix, image_shape, scale, border_mode)
[view source on GitHub]¶
Apply an affine transformation to keypoints.
This function transforms keypoints using the given affine transformation matrix. It handles reflection padding if necessary, updates coordinates, angles, and scales.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | Array of keypoints with shape (N, 4+) where N is the number of keypoints. Each keypoint is represented as [x, y, angle, scale, ...]. |
matrix | np.ndarray | The 2x3 or 3x3 affine transformation matrix. |
image_shape | tuple[int, int] | Shape of the image (height, width). |
scale | dict[str, float] | Dictionary containing scale factors for x and y directions. Expected keys are 'x' and 'y'. |
border_mode | int | Border mode for handling keypoints near image edges. Use cv2.BORDER_REFLECT_101, cv2.BORDER_REFLECT, etc. |
Returns:
Type | Description |
---|---|
np.ndarray | Transformed keypoints array with the same shape as input. |
Notes
- The function applies reflection padding if the mode is in REFLECT_BORDER_MODES.
- Coordinates (x, y) are transformed using the affine matrix.
- Angles are adjusted based on the rotation component of the affine transformation.
- Scales are multiplied by the maximum of x and y scale factors.
- The @angle_2pi_range decorator ensures angles remain in the [0, 2π] range.
Examples:
>>> keypoints = np.array([[100, 100, 0, 1]])
>>> matrix = np.array([[1.5, 0, 10], [0, 1.2, 20]])
>>> scale = {'x': 1.5, 'y': 1.2}
>>> transformed_keypoints = keypoints_affine(keypoints, matrix, (480, 640), scale, cv2.BORDER_REFLECT_101)
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("keypoints")
@angle_2pi_range
def keypoints_affine(
keypoints: np.ndarray,
matrix: np.ndarray,
image_shape: tuple[int, int],
scale: XYFloat,
border_mode: int,
) -> np.ndarray:
"""Apply an affine transformation to keypoints.
This function transforms keypoints using the given affine transformation matrix.
It handles reflection padding if necessary, updates coordinates, angles, and scales.
Args:
keypoints (np.ndarray): Array of keypoints with shape (N, 4+) where N is the number of keypoints.
Each keypoint is represented as [x, y, angle, scale, ...].
matrix (np.ndarray): The 2x3 or 3x3 affine transformation matrix.
image_shape (tuple[int, int]): Shape of the image (height, width).
scale (dict[str, float]): Dictionary containing scale factors for x and y directions.
Expected keys are 'x' and 'y'.
border_mode (int): Border mode for handling keypoints near image edges.
Use cv2.BORDER_REFLECT_101, cv2.BORDER_REFLECT, etc.
Returns:
np.ndarray: Transformed keypoints array with the same shape as input.
Notes:
- The function applies reflection padding if the mode is in REFLECT_BORDER_MODES.
- Coordinates (x, y) are transformed using the affine matrix.
- Angles are adjusted based on the rotation component of the affine transformation.
- Scales are multiplied by the maximum of x and y scale factors.
- The @angle_2pi_range decorator ensures angles remain in the [0, 2π] range.
Example:
>>> keypoints = np.array([[100, 100, 0, 1]])
>>> matrix = np.array([[1.5, 0, 10], [0, 1.2, 20]])
>>> scale = {'x': 1.5, 'y': 1.2}
>>> transformed_keypoints = keypoints_affine(keypoints, matrix, (480, 640), scale, cv2.BORDER_REFLECT_101)
"""
keypoints = keypoints.copy().astype(np.float32)
if is_identity_matrix(matrix):
return keypoints
if border_mode in REFLECT_BORDER_MODES:
# Step 1: Compute affine transform padding
pad_left, pad_right, pad_top, pad_bottom = calculate_affine_transform_padding(
matrix,
image_shape,
)
grid_dimensions = get_pad_grid_dimensions(
pad_top,
pad_bottom,
pad_left,
pad_right,
image_shape,
)
keypoints = generate_reflected_keypoints(
keypoints,
grid_dimensions,
image_shape,
center_in_origin=True,
)
# Extract x, y coordinates
xy = keypoints[:, :2]
# Ensure matrix is 2x3
if matrix.shape == (3, 3):
matrix = matrix[:2]
# Transform x, y coordinates
xy_transformed = cv2.transform(xy.reshape(-1, 1, 2), matrix).squeeze()
# Calculate angle adjustment
angle_adjustment = rotation2d_matrix_to_euler_angles(matrix[:2, :2], y_up=False)
# Update angles
keypoints[:, 2] = keypoints[:, 2] + angle_adjustment
# Update scales
max_scale = max(scale["x"], scale["y"])
keypoints[:, 3] *= max_scale
# Update x, y coordinates
keypoints[:, :2] = xy_transformed
return keypoints
def keypoints_d4 (keypoints, group_member, image_shape, ** params)
[view source on GitHub]¶
Applies a D_4
symmetry group transformation to a keypoint.
This function adjusts a keypoint's coordinates according to the specified D_4
group transformation, which includes rotations and reflections suitable for image processing tasks. These transformations account for the dimensions of the image to ensure the keypoint remains within its boundaries.
- keypoints (np.ndarray): An array of keypoints with shape (N, 4+) in the format (x, y, angle, scale, ...). -group_member (D4Type): A string identifier for the
D_4
group transformation to apply. Valid values are 'e', 'r90', 'r180', 'r270', 'v', 'hv', 'h', 't'. - image_shape (tuple[int, int]): The shape of the image.
- params (Any): Not used
- KeypointInternalType: The transformed keypoint.
- ValueError: If an invalid group member is specified, indicating that the specified transformation does not exist.
Examples:
- Rotating a keypoint by 90 degrees in a 100x100 image:
keypoint_d4((50, 30), 'r90', 100, 100)
This would move the keypoint from (50, 30) to (70, 50) assuming standard coordinate transformations.
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("keypoints")
def keypoints_d4(
keypoints: np.ndarray,
group_member: D4Type,
image_shape: tuple[int, int],
**params: Any,
) -> np.ndarray:
"""Applies a `D_4` symmetry group transformation to a keypoint.
This function adjusts a keypoint's coordinates according to the specified `D_4` group transformation,
which includes rotations and reflections suitable for image processing tasks. These transformations account
for the dimensions of the image to ensure the keypoint remains within its boundaries.
Parameters:
- keypoints (np.ndarray): An array of keypoints with shape (N, 4+) in the format (x, y, angle, scale, ...).
-group_member (D4Type): A string identifier for the `D_4` group transformation to apply.
Valid values are 'e', 'r90', 'r180', 'r270', 'v', 'hv', 'h', 't'.
- image_shape (tuple[int, int]): The shape of the image.
- params (Any): Not used
Returns:
- KeypointInternalType: The transformed keypoint.
Raises:
- ValueError: If an invalid group member is specified, indicating that the specified transformation does not exist.
Examples:
- Rotating a keypoint by 90 degrees in a 100x100 image:
`keypoint_d4((50, 30), 'r90', 100, 100)`
This would move the keypoint from (50, 30) to (70, 50) assuming standard coordinate transformations.
"""
rows, cols = image_shape[:2]
transformations = {
"e": lambda x: x, # Identity transformation
"r90": lambda x: keypoints_rot90(x, 1, image_shape), # Rotate 90 degrees
"r180": lambda x: keypoints_rot90(x, 2, image_shape), # Rotate 180 degrees
"r270": lambda x: keypoints_rot90(x, 3, image_shape), # Rotate 270 degrees
"v": lambda x: keypoints_vflip(x, rows), # Vertical flip
"hvt": lambda x: keypoints_transpose(
keypoints_rot90(x, 2, image_shape),
), # Reflect over anti diagonal
"h": lambda x: keypoints_hflip(x, cols), # Horizontal flip
"t": lambda x: keypoints_transpose(x), # Transpose (reflect over main diagonal)
}
# Execute the appropriate transformation
if group_member in transformations:
return transformations[group_member](keypoints)
raise ValueError(f"Invalid group member: {group_member}")
def keypoints_hflip (keypoints, cols)
[view source on GitHub]¶
Flip keypoints horizontally around the y-axis.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | A numpy array of shape (N, 4+) where each row represents a keypoint (x, y, angle, scale, ...). |
cols | int | Image width. |
Returns:
Type | Description |
---|---|
np.ndarray | An array of flipped keypoints with the same shape as the input. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("keypoints")
@angle_2pi_range
def keypoints_hflip(keypoints: np.ndarray, cols: int) -> np.ndarray:
"""Flip keypoints horizontally around the y-axis.
Args:
keypoints: A numpy array of shape (N, 4+) where each row represents a keypoint (x, y, angle, scale, ...).
cols: Image width.
Returns:
np.ndarray: An array of flipped keypoints with the same shape as the input.
"""
flipped_keypoints = keypoints.copy().astype(np.float32)
# Flip x-coordinates
flipped_keypoints[:, 0] = (cols - 1) - keypoints[:, 0]
# Adjust angles
flipped_keypoints[:, 2] = np.pi - keypoints[:, 2]
return flipped_keypoints
def keypoints_rot90 (keypoints, factor, image_shape)
[view source on GitHub]¶
Rotate keypoints by 90 degrees counter-clockwise (CCW) a specified number of times.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | An array of keypoints with shape (N, 4+) in the format (x, y, angle, scale, ...). |
factor | int | The number of 90 degree CCW rotations to apply. Must be in the range [0, 3]. |
image_shape | tuple[int, int] | The shape of the image (height, width). |
Returns:
Type | Description |
---|---|
np.ndarray | The rotated keypoints with the same shape as the input. |
Exceptions:
Type | Description |
---|---|
ValueError | If the factor is not in the set {0, 1, 2, 3}. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("keypoints")
@angle_2pi_range
def keypoints_rot90(
keypoints: np.ndarray,
factor: int,
image_shape: tuple[int, int],
) -> np.ndarray:
"""Rotate keypoints by 90 degrees counter-clockwise (CCW) a specified number of times.
Args:
keypoints (np.ndarray): An array of keypoints with shape (N, 4+) in the format (x, y, angle, scale, ...).
factor (int): The number of 90 degree CCW rotations to apply. Must be in the range [0, 3].
image_shape (tuple[int, int]): The shape of the image (height, width).
Returns:
np.ndarray: The rotated keypoints with the same shape as the input.
Raises:
ValueError: If the factor is not in the set {0, 1, 2, 3}.
"""
if factor not in {0, 1, 2, 3}:
raise ValueError("Parameter factor must be in set {0, 1, 2, 3}")
if factor == 0:
return keypoints
height, width = image_shape[:2]
rotated_keypoints = keypoints.copy().astype(np.float32)
x, y, angle = keypoints[:, 0], keypoints[:, 1], keypoints[:, 2]
if factor == 1:
rotated_keypoints[:, 0] = y
rotated_keypoints[:, 1] = width - 1 - x
rotated_keypoints[:, 2] = angle - np.pi / 2
elif factor == ROT90_180_FACTOR:
rotated_keypoints[:, 0] = width - 1 - x
rotated_keypoints[:, 1] = height - 1 - y
rotated_keypoints[:, 2] = angle - np.pi
elif factor == ROT90_270_FACTOR:
rotated_keypoints[:, 0] = height - 1 - y
rotated_keypoints[:, 1] = x
rotated_keypoints[:, 2] = angle + np.pi / 2
return rotated_keypoints
def keypoints_scale (keypoints, scale_x, scale_y)
[view source on GitHub]¶
Scales keypoints by scale_x and scale_y.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | A numpy array of keypoints with shape (N, 4+) in the format (x, y, angle, scale, ...). |
scale_x | float | Scale coefficient x-axis. |
scale_y | float | Scale coefficient y-axis. |
Returns:
Type | Description |
---|---|
np.ndarray | A numpy array of scaled keypoints with the same shape as input. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("keypoints")
def keypoints_scale(
keypoints: np.ndarray,
scale_x: float,
scale_y: float,
) -> np.ndarray:
"""Scales keypoints by scale_x and scale_y.
Args:
keypoints: A numpy array of keypoints with shape (N, 4+) in the format (x, y, angle, scale, ...).
scale_x: Scale coefficient x-axis.
scale_y: Scale coefficient y-axis.
Returns:
A numpy array of scaled keypoints with the same shape as input.
"""
# Extract x, y, angle, and scale
x, y, angle, scale = (
keypoints[:, 0],
keypoints[:, 1],
keypoints[:, 2],
keypoints[:, 3],
)
# Scale x and y
x_scaled = x * scale_x
y_scaled = y * scale_y
# Scale the keypoint scale by the maximum of scale_x and scale_y
scale_scaled = scale * max(scale_x, scale_y)
# Create the output array
scaled_keypoints = np.column_stack([x_scaled, y_scaled, angle, scale_scaled])
# If there are additional columns, preserve them
if keypoints.shape[1] > NUM_KEYPOINTS_COLUMNS_IN_ALBUMENTATIONS:
return np.column_stack(
[scaled_keypoints, keypoints[:, NUM_KEYPOINTS_COLUMNS_IN_ALBUMENTATIONS:]],
)
return scaled_keypoints
def keypoints_transpose (keypoints)
[view source on GitHub]¶
Transposes keypoints along the main diagonal.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | A numpy array of shape (N, 4+) where each row represents a keypoint (x, y, angle, scale, ...). |
Returns:
Type | Description |
---|---|
np.ndarray | An array of transposed keypoints with the same shape as the input. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("keypoints")
@angle_2pi_range
def keypoints_transpose(keypoints: np.ndarray) -> np.ndarray:
"""Transposes keypoints along the main diagonal.
Args:
keypoints: A numpy array of shape (N, 4+) where each row represents a keypoint (x, y, angle, scale, ...).
Returns:
np.ndarray: An array of transposed keypoints with the same shape as the input.
"""
transposed_keypoints = keypoints.copy()
# Swap x and y coordinates
transposed_keypoints[:, [0, 1]] = keypoints[:, [1, 0]]
# Adjust angles to reflect the coordinate swap
angles = keypoints[:, 2]
transposed_keypoints[:, 2] = np.where(
angles <= np.pi,
np.pi / 2 - angles,
3 * np.pi / 2 - angles,
)
return transposed_keypoints
def keypoints_vflip (keypoints, rows)
[view source on GitHub]¶
Flip keypoints vertically around the x-axis.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | A numpy array of shape (N, 4+) where each row represents a keypoint (x, y, angle, scale, ...). |
rows | int | Image height. |
Returns:
Type | Description |
---|---|
np.ndarray | An array of flipped keypoints with the same shape as the input. |
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("keypoints")
@angle_2pi_range
def keypoints_vflip(keypoints: np.ndarray, rows: int) -> np.ndarray:
"""Flip keypoints vertically around the x-axis.
Args:
keypoints: A numpy array of shape (N, 4+) where each row represents a keypoint (x, y, angle, scale, ...).
rows: Image height.
Returns:
np.ndarray: An array of flipped keypoints with the same shape as the input.
"""
flipped_keypoints = keypoints.copy().astype(np.float32)
# Flip y-coordinates
flipped_keypoints[:, 1] = (rows - 1) - keypoints[:, 1]
# Negate angles
flipped_keypoints[:, 2] = -keypoints[:, 2]
return flipped_keypoints
def perspective_bboxes (bboxes, image_shape, matrix, max_width, max_height, keep_size)
[view source on GitHub]¶
Applies perspective transformation to bounding boxes.
This function transforms bounding boxes using the given perspective transformation matrix. It handles bounding boxes with additional attributes beyond the standard coordinates.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | An array of bounding boxes with shape (num_bboxes, 4+). Each row represents a bounding box (x_min, y_min, x_max, y_max, ...). Additional columns beyond the first 4 are preserved unchanged. |
image_shape | tuple[int, int] | The shape of the image (height, width). |
matrix | np.ndarray | The perspective transformation matrix. |
max_width | int | The maximum width of the output image. |
max_height | int | The maximum height of the output image. |
keep_size | bool | If True, maintains the original image size after transformation. |
Returns:
Type | Description |
---|---|
np.ndarray | An array of transformed bounding boxes with the same shape as input. The first 4 columns contain the transformed coordinates, and any additional columns are preserved from the input. |
Note
- This function modifies only the coordinate columns (first 4) of the input bounding boxes.
- Any additional attributes (columns beyond the first 4) are kept unchanged.
- The function handles denormalization and renormalization of coordinates internally.
Examples:
>>> bboxes = np.array([[0.1, 0.1, 0.3, 0.3, 1], [0.5, 0.5, 0.8, 0.8, 2]])
>>> image_shape = (100, 100)
>>> matrix = np.array([[1.5, 0.2, -20], [-0.1, 1.3, -10], [0.002, 0.001, 1]])
>>> transformed_bboxes = perspective_bboxes(bboxes, image_shape, matrix, 150, 150, False)
Source code in albumentations/augmentations/geometric/functional.py
@handle_empty_array("bboxes")
def perspective_bboxes(
bboxes: np.ndarray,
image_shape: tuple[int, int],
matrix: np.ndarray,
max_width: int,
max_height: int,
keep_size: bool,
) -> np.ndarray:
"""Applies perspective transformation to bounding boxes.
This function transforms bounding boxes using the given perspective transformation matrix.
It handles bounding boxes with additional attributes beyond the standard coordinates.
Args:
bboxes (np.ndarray): An array of bounding boxes with shape (num_bboxes, 4+).
Each row represents a bounding box (x_min, y_min, x_max, y_max, ...).
Additional columns beyond the first 4 are preserved unchanged.
image_shape (tuple[int, int]): The shape of the image (height, width).
matrix (np.ndarray): The perspective transformation matrix.
max_width (int): The maximum width of the output image.
max_height (int): The maximum height of the output image.
keep_size (bool): If True, maintains the original image size after transformation.
Returns:
np.ndarray: An array of transformed bounding boxes with the same shape as input.
The first 4 columns contain the transformed coordinates, and any
additional columns are preserved from the input.
Note:
- This function modifies only the coordinate columns (first 4) of the input bounding boxes.
- Any additional attributes (columns beyond the first 4) are kept unchanged.
- The function handles denormalization and renormalization of coordinates internally.
Example:
>>> bboxes = np.array([[0.1, 0.1, 0.3, 0.3, 1], [0.5, 0.5, 0.8, 0.8, 2]])
>>> image_shape = (100, 100)
>>> matrix = np.array([[1.5, 0.2, -20], [-0.1, 1.3, -10], [0.002, 0.001, 1]])
>>> transformed_bboxes = perspective_bboxes(bboxes, image_shape, matrix, 150, 150, False)
"""
height, width = image_shape[:2]
transformed_bboxes = bboxes.copy()
denormalized_coords = denormalize_bboxes(bboxes[:, :4], image_shape)
x_min, y_min, x_max, y_max = denormalized_coords.T
points = np.array(
[[x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max]],
).transpose(2, 0, 1)
points_reshaped = points.reshape(-1, 1, 2)
transformed_points = cv2.perspectiveTransform(
points_reshaped.astype(np.float32),
matrix,
)
transformed_points = transformed_points.reshape(-1, 4, 2)
new_coords = np.array(
[[np.min(box[:, 0]), np.min(box[:, 1]), np.max(box[:, 0]), np.max(box[:, 1])] for box in transformed_points],
)
if keep_size:
scale_x, scale_y = width / max_width, height / max_height
new_coords[:, [0, 2]] *= scale_x
new_coords[:, [1, 3]] *= scale_y
output_shape = image_shape
else:
output_shape = (max_height, max_width)
normalized_coords = normalize_bboxes(new_coords, output_shape)
transformed_bboxes[:, :4] = normalized_coords
return transformed_bboxes
def rotation2d_matrix_to_euler_angles (matrix, y_up)
[view source on GitHub]¶
matrix (np.ndarray): Rotation matrix y_up (bool): is Y axis looks up or down
Source code in albumentations/augmentations/geometric/functional.py
def shift_bboxes (bboxes, shift_vector)
[view source on GitHub]¶
Shift bounding boxes by a given vector.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | Array of bounding boxes with shape (n, m) where n is the number of bboxes and m >= 4. The first 4 columns are [x_min, y_min, x_max, y_max]. |
shift_vector | np.ndarray | Vector to shift the bounding boxes by, with shape (4,) for [shift_x, shift_y, shift_x, shift_y]. |
Returns:
Type | Description |
---|---|
np.ndarray | Shifted bounding boxes with the same shape as input. |
Source code in albumentations/augmentations/geometric/functional.py
def shift_bboxes(bboxes: np.ndarray, shift_vector: np.ndarray) -> np.ndarray:
"""Shift bounding boxes by a given vector.
Args:
bboxes (np.ndarray): Array of bounding boxes with shape (n, m) where n is the number of bboxes
and m >= 4. The first 4 columns are [x_min, y_min, x_max, y_max].
shift_vector (np.ndarray): Vector to shift the bounding boxes by, with shape (4,) for
[shift_x, shift_y, shift_x, shift_y].
Returns:
np.ndarray: Shifted bounding boxes with the same shape as input.
"""
# Create a copy of the input array to avoid modifying it in-place
shifted_bboxes = bboxes.copy()
# Add the shift vector to the first 4 columns
shifted_bboxes[:, :4] += shift_vector
return shifted_bboxes
def shuffle_tiles_within_shape_groups (shape_groups, random_generator)
[view source on GitHub]¶
Shuffles indices within each group of similar shapes and creates a list where each index points to the index of the tile it should be mapped to.
Parameters:
Name | Type | Description |
---|---|---|
shape_groups | dict[tuple[int, int], list[int]] | Groups of tile indices categorized by shape. |
random_generator | np.random.Generator | The random generator to use for shuffling the indices. If None, a new random generator will be used. |
Returns:
Type | Description |
---|---|
list[int] | A list where each index is mapped to the new index of the tile after shuffling. |
Source code in albumentations/augmentations/geometric/functional.py
def shuffle_tiles_within_shape_groups(
shape_groups: dict[tuple[int, int], list[int]],
random_generator: np.random.Generator,
) -> list[int]:
"""Shuffles indices within each group of similar shapes and creates a list where each
index points to the index of the tile it should be mapped to.
Args:
shape_groups (dict[tuple[int, int], list[int]]): Groups of tile indices categorized by shape.
random_generator (np.random.Generator): The random generator to use for shuffling the indices.
If None, a new random generator will be used.
Returns:
list[int]: A list where each index is mapped to the new index of the tile after shuffling.
"""
# Initialize the output list with the same size as the total number of tiles, filled with -1
num_tiles = sum(len(indices) for indices in shape_groups.values())
mapping = [-1] * num_tiles
# Prepare the random number generator
for indices in shape_groups.values():
shuffled_indices = indices.copy()
random_generator.shuffle(shuffled_indices)
for old, new in zip(indices, shuffled_indices):
mapping[old] = new
return mapping
def split_uniform_grid (image_shape, grid, random_generator)
[view source on GitHub]¶
Splits an image shape into a uniform grid specified by the grid dimensions.
Parameters:
Name | Type | Description |
---|---|---|
image_shape | tuple[int, int] | The shape of the image as (height, width). |
grid | tuple[int, int] | The grid size as (rows, columns). |
random_generator | np.random.Generator | The random generator to use for shuffling the splits. If None, the splits are not shuffled. |
Returns:
Type | Description |
---|---|
np.ndarray | An array containing the tiles' coordinates in the format (start_y, start_x, end_y, end_x). |
Note
The function uses generate_shuffled_splits
to generate the splits for the height and width of the image. The splits are then used to calculate the coordinates of the tiles.
Source code in albumentations/augmentations/geometric/functional.py
def split_uniform_grid(
image_shape: tuple[int, int],
grid: tuple[int, int],
random_generator: np.random.Generator,
) -> np.ndarray:
"""Splits an image shape into a uniform grid specified by the grid dimensions.
Args:
image_shape (tuple[int, int]): The shape of the image as (height, width).
grid (tuple[int, int]): The grid size as (rows, columns).
random_generator (np.random.Generator): The random generator to use for shuffling the splits.
If None, the splits are not shuffled.
Returns:
np.ndarray: An array containing the tiles' coordinates in the format (start_y, start_x, end_y, end_x).
Note:
The function uses `generate_shuffled_splits` to generate the splits for the height and width of the image.
The splits are then used to calculate the coordinates of the tiles.
"""
n_rows, n_cols = grid
height_splits = generate_shuffled_splits(
image_shape[0],
grid[0],
random_generator=random_generator,
)
width_splits = generate_shuffled_splits(
image_shape[1],
grid[1],
random_generator=random_generator,
)
# Calculate tiles coordinates
tiles = [
(height_splits[i], width_splits[j], height_splits[i + 1], width_splits[j + 1])
for i in range(n_rows)
for j in range(n_cols)
]
return np.array(tiles, dtype=np.int16)
def swap_tiles_on_image (image, tiles, mapping=None)
[view source on GitHub]¶
Swap tiles on the image according to the new format.
Parameters:
Name | Type | Description |
---|---|---|
image | np.ndarray | Input image. |
tiles | np.ndarray | Array of tiles with each tile as [start_y, start_x, end_y, end_x]. |
mapping | list[int] | None | list of new tile indices. |
Returns:
Type | Description |
---|---|
np.ndarray | Output image with tiles swapped according to the random shuffle. |
Source code in albumentations/augmentations/geometric/functional.py
def swap_tiles_on_image(
image: np.ndarray,
tiles: np.ndarray,
mapping: list[int] | None = None,
) -> np.ndarray:
"""Swap tiles on the image according to the new format.
Args:
image: Input image.
tiles: Array of tiles with each tile as [start_y, start_x, end_y, end_x].
mapping: list of new tile indices.
Returns:
np.ndarray: Output image with tiles swapped according to the random shuffle.
"""
# If no tiles are provided, return a copy of the original image
if tiles.size == 0 or mapping is None:
return image.copy()
# Create a copy of the image to retain original for reference
new_image = np.empty_like(image)
for num, new_index in enumerate(mapping):
start_y, start_x, end_y, end_x = tiles[new_index]
start_y_orig, start_x_orig, end_y_orig, end_x_orig = tiles[num]
# Assign the corresponding tile from the original image to the new image
new_image[start_y:end_y, start_x:end_x] = image[
start_y_orig:end_y_orig,
start_x_orig:end_x_orig,
]
return new_image
def swap_tiles_on_keypoints (keypoints, tiles, mapping)
[view source on GitHub]¶
Swap the positions of keypoints based on a tile mapping.
This function takes a set of keypoints and repositions them according to a mapping of tile swaps. Keypoints are moved from their original tiles to new positions in the swapped tiles.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | A 2D numpy array of shape (N, 2) where N is the number of keypoints. Each row represents a keypoint's (x, y) coordinates. |
tiles | np.ndarray | A 2D numpy array of shape (M, 4) where M is the number of tiles. Each row represents a tile's (start_y, start_x, end_y, end_x) coordinates. |
mapping | np.ndarray | A 1D numpy array of shape (M,) where M is the number of tiles. Each element i contains the index of the tile that tile i should be swapped with. |
Returns:
Type | Description |
---|---|
np.ndarray | A 2D numpy array of the same shape as the input keypoints, containing the new positions of the keypoints after the tile swap. |
Exceptions:
Type | Description |
---|---|
RuntimeWarning | If any keypoint is not found within any tile. |
Notes
- Keypoints that do not fall within any tile will remain unchanged.
- The function assumes that the tiles do not overlap and cover the entire image space.
Source code in albumentations/augmentations/geometric/functional.py
def swap_tiles_on_keypoints(
keypoints: np.ndarray,
tiles: np.ndarray,
mapping: np.ndarray,
) -> np.ndarray:
"""Swap the positions of keypoints based on a tile mapping.
This function takes a set of keypoints and repositions them according to a mapping of tile swaps.
Keypoints are moved from their original tiles to new positions in the swapped tiles.
Args:
keypoints (np.ndarray): A 2D numpy array of shape (N, 2) where N is the number of keypoints.
Each row represents a keypoint's (x, y) coordinates.
tiles (np.ndarray): A 2D numpy array of shape (M, 4) where M is the number of tiles.
Each row represents a tile's (start_y, start_x, end_y, end_x) coordinates.
mapping (np.ndarray): A 1D numpy array of shape (M,) where M is the number of tiles.
Each element i contains the index of the tile that tile i should be swapped with.
Returns:
np.ndarray: A 2D numpy array of the same shape as the input keypoints, containing the new positions
of the keypoints after the tile swap.
Raises:
RuntimeWarning: If any keypoint is not found within any tile.
Notes:
- Keypoints that do not fall within any tile will remain unchanged.
- The function assumes that the tiles do not overlap and cover the entire image space.
"""
if not keypoints.size:
return keypoints
# Broadcast keypoints and tiles for vectorized comparison
kp_x = keypoints[:, 0][:, np.newaxis] # Shape: (num_keypoints, 1)
kp_y = keypoints[:, 1][:, np.newaxis] # Shape: (num_keypoints, 1)
start_y, start_x, end_y, end_x = tiles.T # Each shape: (num_tiles,)
# Check if each keypoint is inside each tile
in_tile = (kp_y >= start_y) & (kp_y < end_y) & (kp_x >= start_x) & (kp_x < end_x)
# Find which tile each keypoint belongs to
tile_indices = np.argmax(in_tile, axis=1)
# Check if any keypoint is not in any tile
not_in_any_tile = ~np.any(in_tile, axis=1)
if np.any(not_in_any_tile):
warn(
"Some keypoints are not in any tile. They will be returned unchanged. This is unexpected and should be "
"investigated.",
RuntimeWarning,
stacklevel=2,
)
# Get the new tile indices
new_tile_indices = np.array(mapping)[tile_indices]
# Calculate the offsets
old_start_x = tiles[tile_indices, 1]
old_start_y = tiles[tile_indices, 0]
new_start_x = tiles[new_tile_indices, 1]
new_start_y = tiles[new_tile_indices, 0]
# Apply the transformation
new_keypoints = keypoints.copy()
new_keypoints[:, 0] = (keypoints[:, 0] - old_start_x) + new_start_x
new_keypoints[:, 1] = (keypoints[:, 1] - old_start_y) + new_start_y
# Keep original coordinates for keypoints not in any tile
new_keypoints[not_in_any_tile] = keypoints[not_in_any_tile]
return new_keypoints
def to_distance_maps (keypoints, image_shape, inverted=False)
[view source on GitHub]¶
Generate a (H,W,N)
array of distance maps for N
keypoints.
The n
-th distance map contains at every location (y, x)
the euclidean distance to the n
-th keypoint.
This function can be used as a helper when augmenting keypoints with a method that only supports the augmentation of images.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | A numpy array of shape (N, 2+) where N is the number of keypoints. Each row represents a keypoint's (x, y) coordinates. |
image_shape | tuple[int, int] | tuple[int, int] shape of the image (height, width) |
inverted | bool | If |
Returns:
Type | Description |
---|---|
np.ndarray | A |
Source code in albumentations/augmentations/geometric/functional.py
def to_distance_maps(
keypoints: np.ndarray,
image_shape: tuple[int, int],
inverted: bool = False,
) -> np.ndarray:
"""Generate a ``(H,W,N)`` array of distance maps for ``N`` keypoints.
The ``n``-th distance map contains at every location ``(y, x)`` the
euclidean distance to the ``n``-th keypoint.
This function can be used as a helper when augmenting keypoints with a
method that only supports the augmentation of images.
Args:
keypoints: A numpy array of shape (N, 2+) where N is the number of keypoints.
Each row represents a keypoint's (x, y) coordinates.
image_shape: tuple[int, int] shape of the image (height, width)
inverted (bool): If ``True``, inverted distance maps are returned where each
distance value d is replaced by ``d/(d+1)``, i.e. the distance
maps have values in the range ``(0.0, 1.0]`` with ``1.0`` denoting
exactly the position of the respective keypoint.
Returns:
np.ndarray: A ``float32`` array of shape (H, W, N) containing ``N`` distance maps for ``N``
keypoints. Each location ``(y, x, n)`` in the array denotes the
euclidean distance at ``(y, x)`` to the ``n``-th keypoint.
If `inverted` is ``True``, the distance ``d`` is replaced
by ``d/(d+1)``. The height and width of the array match the
height and width in ``image_shape``.
"""
height, width = image_shape[:2]
if len(keypoints) == 0:
return np.zeros((height, width, 0), dtype=np.float32)
# Create coordinate grids
yy, xx = np.mgrid[:height, :width]
# Convert keypoints to numpy array
keypoints_array = np.array(keypoints)
# Compute distances for all keypoints at once
distances = np.sqrt(
(xx[..., np.newaxis] - keypoints_array[:, 0]) ** 2 + (yy[..., np.newaxis] - keypoints_array[:, 1]) ** 2,
)
if inverted:
return (1 / (distances + 1)).astype(np.float32)
return distances.astype(np.float32)
def tps_transform (target_points, control_points, nonlinear_weights, affine_weights)
[view source on GitHub]¶
Apply Thin Plate Spline transformation to points.
Parameters:
Name | Type | Description |
---|---|---|
target_points | np.ndarray | Points to transform with shape (num_targets, 2) |
control_points | np.ndarray | Original control points with shape (num_controls, 2) |
nonlinear_weights | np.ndarray | TPS kernel weights with shape (num_controls, 2) |
affine_weights | np.ndarray | Affine transformation weights with shape (3, 2) |
Returns:
Type | Description |
---|---|
np.ndarray | Transformed points with shape (num_targets, 2) |
Note
The transformation combines: 1. Nonlinear warping based on distances to control points 2. Global affine transformation (scale, rotation, translation)
Source code in albumentations/augmentations/geometric/functional.py
def tps_transform(
target_points: np.ndarray,
control_points: np.ndarray,
nonlinear_weights: np.ndarray,
affine_weights: np.ndarray,
) -> np.ndarray:
"""Apply Thin Plate Spline transformation to points.
Args:
target_points: Points to transform with shape (num_targets, 2)
control_points: Original control points with shape (num_controls, 2)
nonlinear_weights: TPS kernel weights with shape (num_controls, 2)
affine_weights: Affine transformation weights with shape (3, 2)
Returns:
Transformed points with shape (num_targets, 2)
Note:
The transformation combines:
1. Nonlinear warping based on distances to control points
2. Global affine transformation (scale, rotation, translation)
"""
# Compute all pairwise distances at once: (num_targets, num_controls)
distances = np.linalg.norm(target_points[:, None] - control_points, axis=2)
# Apply TPS kernel function: U(r) = r² log(r)
kernel_matrix = np.where(
distances > 0,
distances * distances * np.log(distances + 1e-6),
0,
)
# Prepare affine terms [1, x, y] for each point
affine_terms = np.c_[np.ones(len(target_points)), target_points]
# Combine nonlinear and affine transformations
return kernel_matrix @ nonlinear_weights + affine_terms @ affine_weights
def transpose (img)
[view source on GitHub]¶
Transposes the first two dimensions of an array of any dimensionality. Retains the order of any additional dimensions.
Parameters:
Name | Type | Description |
---|---|---|
img | np.ndarray | Input array. |
Returns:
Type | Description |
---|---|
np.ndarray | Transposed array. |
Source code in albumentations/augmentations/geometric/functional.py
def transpose(img: np.ndarray) -> np.ndarray:
"""Transposes the first two dimensions of an array of any dimensionality.
Retains the order of any additional dimensions.
Args:
img (np.ndarray): Input array.
Returns:
np.ndarray: Transposed array.
"""
# Generate the new axes order
new_axes = list(range(img.ndim))
new_axes[0], new_axes[1] = 1, 0 # Swap the first two dimensions
# Transpose the array using the new axes order
return img.transpose(new_axes)
def validate_bboxes (bboxes, image_shape)
[view source on GitHub]¶
Validate bounding boxes and remove invalid ones.
Parameters:
Name | Type | Description |
---|---|---|
bboxes | np.ndarray | Array of bounding boxes with shape (n, 4) where each row is [x_min, y_min, x_max, y_max]. |
image_shape | tuple[int, int] | Shape of the image as (height, width). |
Returns:
Type | Description |
---|---|
np.ndarray | Array of valid bounding boxes, potentially with fewer boxes than the input. |
Examples:
>>> bboxes = np.array([[10, 20, 30, 40], [-10, -10, 5, 5], [100, 100, 120, 120]])
>>> valid_bboxes = validate_bboxes(bboxes, (100, 100))
>>> print(valid_bboxes)
[[10 20 30 40]]
Source code in albumentations/augmentations/geometric/functional.py
def validate_bboxes(bboxes: np.ndarray, image_shape: Sequence[int]) -> np.ndarray:
"""Validate bounding boxes and remove invalid ones.
Args:
bboxes (np.ndarray): Array of bounding boxes with shape (n, 4) where each row is [x_min, y_min, x_max, y_max].
image_shape (tuple[int, int]): Shape of the image as (height, width).
Returns:
np.ndarray: Array of valid bounding boxes, potentially with fewer boxes than the input.
Example:
>>> bboxes = np.array([[10, 20, 30, 40], [-10, -10, 5, 5], [100, 100, 120, 120]])
>>> valid_bboxes = validate_bboxes(bboxes, (100, 100))
>>> print(valid_bboxes)
[[10 20 30 40]]
"""
rows, cols = image_shape[:2]
x_min, y_min, x_max, y_max = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
valid_indices = (x_max > 0) & (y_max > 0) & (x_min < cols) & (y_min < rows)
return bboxes[valid_indices]
def validate_if_not_found_coords (if_not_found_coords)
[view source on GitHub]¶
Validate and process if_not_found_coords
parameter.
Source code in albumentations/augmentations/geometric/functional.py
def validate_if_not_found_coords(
if_not_found_coords: Sequence[int] | dict[str, Any] | None,
) -> tuple[bool, float, float]:
"""Validate and process `if_not_found_coords` parameter."""
if if_not_found_coords is None:
return True, -1, -1
if isinstance(if_not_found_coords, (tuple, list)):
if len(if_not_found_coords) != PAIR:
msg = "Expected tuple/list 'if_not_found_coords' to contain exactly two entries."
raise ValueError(msg)
return False, if_not_found_coords[0], if_not_found_coords[1]
if isinstance(if_not_found_coords, dict):
return False, if_not_found_coords["x"], if_not_found_coords["y"]
msg = "Expected if_not_found_coords to be None, tuple, list, or dict."
raise ValueError(msg)
def validate_keypoints (keypoints, image_shape)
[view source on GitHub]¶
Validate keypoints and remove those that fall outside the image boundaries.
Parameters:
Name | Type | Description |
---|---|---|
keypoints | np.ndarray | Array of keypoints with shape (N, M) where N is the number of keypoints and M >= 2. The first two columns represent x and y coordinates. |
image_shape | tuple[int, int] | Shape of the image as (height, width). |
Returns:
Type | Description |
---|---|
np.ndarray | Array of valid keypoints that fall within the image boundaries. |
Note
This function only checks the x and y coordinates (first two columns) of the keypoints. Any additional columns (e.g., angle, scale) are preserved for valid keypoints.
Source code in albumentations/augmentations/geometric/functional.py
def validate_keypoints(
keypoints: np.ndarray,
image_shape: tuple[int, int],
) -> np.ndarray:
"""Validate keypoints and remove those that fall outside the image boundaries.
Args:
keypoints (np.ndarray): Array of keypoints with shape (N, M) where N is the number of keypoints
and M >= 2. The first two columns represent x and y coordinates.
image_shape (tuple[int, int]): Shape of the image as (height, width).
Returns:
np.ndarray: Array of valid keypoints that fall within the image boundaries.
Note:
This function only checks the x and y coordinates (first two columns) of the keypoints.
Any additional columns (e.g., angle, scale) are preserved for valid keypoints.
"""
rows, cols = image_shape[:2]
x, y = keypoints[:, 0], keypoints[:, 1]
valid_indices = (x >= 0) & (x < cols) & (y >= 0) & (y < rows)
return keypoints[valid_indices]