Skip to content

XYMasking augmentation (augmentations.dropout.xy_masking)

class XYMasking (num_masks_x=0, num_masks_y=0, mask_x_length=0, mask_y_length=0, fill_value=None, mask_fill_value=None, fill=0, fill_mask=None, p=0.5, always_apply=None) [view source on GitHub] ΒΆ

Applies masking strips to an image, either horizontally (X axis) or vertically (Y axis), simulating occlusions. This transform is useful for training models to recognize images with varied visibility conditions. It's particularly effective for spectrogram images, allowing spectral and frequency masking to improve model robustness.

At least one of max_x_length or max_y_length must be specified, dictating the mask's maximum size along each axis.

Parameters:

Name Type Description
num_masks_x int | tuple[int, int]

Number or range of horizontal regions to mask. Defaults to 0.

num_masks_y int | tuple[int, int]

Number or range of vertical regions to mask. Defaults to 0.

mask_x_length int | tuple[int, int]

Specifies the length of the masks along the X (horizontal) axis. If an integer is provided, it sets a fixed mask length. If a tuple of two integers (min, max) is provided, the mask length is randomly chosen within this range for each mask. This allows for variable-length masks in the horizontal direction.

mask_y_length int | tuple[int, int]

Specifies the height of the masks along the Y (vertical) axis. Similar to mask_x_length, an integer sets a fixed mask height, while a tuple (min, max) allows for variable-height masks, chosen randomly within the specified range for each mask. This flexibility facilitates creating masks of various sizes in the vertical direction.

fill ColorType | Literal["random", "random_uniform", "inpaint_telea", "inpaint_ns"]

Value for the dropped pixels. Can be: - int or float: all channels are filled with this value - tuple: tuple of values for each channel - 'random': each pixel is filled with random values - 'random_uniform': each hole is filled with a single random color - 'inpaint_telea': uses OpenCV Telea inpainting method - 'inpaint_ns': uses OpenCV Navier-Stokes inpainting method Default: 0

mask_fill_value ColorType | None

Fill value for dropout regions in the mask. If None, mask regions corresponding to image dropouts are unchanged. Default: None

p float

Probability of applying the transform. Defaults to 0.5.

Targets

image, mask, bboxes, keypoints

Image types: uint8, float32

Note: Either max_x_length or max_y_length or both must be defined.

Interactive Tool Available!

Explore this transform visually and adjust parameters interactively using this tool:

Open Tool

Source code in albumentations/augmentations/dropout/xy_masking.py
Python
class XYMasking(BaseDropout):
    """Applies masking strips to an image, either horizontally (X axis) or vertically (Y axis),
    simulating occlusions. This transform is useful for training models to recognize images
    with varied visibility conditions. It's particularly effective for spectrogram images,
    allowing spectral and frequency masking to improve model robustness.

    At least one of `max_x_length` or `max_y_length` must be specified, dictating the mask's
    maximum size along each axis.

    Args:
        num_masks_x (int | tuple[int, int]): Number or range of horizontal regions to mask. Defaults to 0.
        num_masks_y (int | tuple[int, int]): Number or range of vertical regions to mask. Defaults to 0.
        mask_x_length (int | tuple[int, int]): Specifies the length of the masks along
            the X (horizontal) axis. If an integer is provided, it sets a fixed mask length.
            If a tuple of two integers (min, max) is provided,
            the mask length is randomly chosen within this range for each mask.
            This allows for variable-length masks in the horizontal direction.
        mask_y_length (int | tuple[int, int]): Specifies the height of the masks along
            the Y (vertical) axis. Similar to `mask_x_length`, an integer sets a fixed mask height,
            while a tuple (min, max) allows for variable-height masks, chosen randomly
            within the specified range for each mask. This flexibility facilitates creating masks of various
            sizes in the vertical direction.
        fill (ColorType | Literal["random", "random_uniform", "inpaint_telea", "inpaint_ns"]):
            Value for the dropped pixels. Can be:
            - int or float: all channels are filled with this value
            - tuple: tuple of values for each channel
            - 'random': each pixel is filled with random values
            - 'random_uniform': each hole is filled with a single random color
            - 'inpaint_telea': uses OpenCV Telea inpainting method
            - 'inpaint_ns': uses OpenCV Navier-Stokes inpainting method
            Default: 0
        mask_fill_value (ColorType | None): Fill value for dropout regions in the mask.
            If None, mask regions corresponding to image dropouts are unchanged. Default: None
        p (float): Probability of applying the transform. Defaults to 0.5.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32

    Note: Either `max_x_length` or `max_y_length` or both must be defined.
    """

    class InitSchema(BaseTransformInitSchema):
        num_masks_x: NonNegativeIntRangeType
        num_masks_y: NonNegativeIntRangeType
        mask_x_length: NonNegativeIntRangeType
        mask_y_length: NonNegativeIntRangeType

        fill_value: DropoutFillValue | None = Field(deprecated="Deprecated use fill instead")
        mask_fill_value: ColorType | None = Field(deprecated="Deprecated use fill_mask instead")

        fill: DropoutFillValue
        fill_mask: ColorType | None

        @model_validator(mode="after")
        def check_mask_length(self) -> Self:
            if (
                isinstance(self.mask_x_length, int)
                and self.mask_x_length <= 0
                and isinstance(self.mask_y_length, int)
                and self.mask_y_length <= 0
            ):
                msg = "At least one of `mask_x_length` or `mask_y_length` Should be a positive number."
                raise ValueError(msg)

            if self.fill_value is not None:
                self.fill = self.fill_value

            if self.mask_fill_value is not None:
                self.fill_mask = self.mask_fill_value

            return self

    def __init__(
        self,
        num_masks_x: ScaleIntType = 0,
        num_masks_y: ScaleIntType = 0,
        mask_x_length: ScaleIntType = 0,
        mask_y_length: ScaleIntType = 0,
        fill_value: DropoutFillValue | None = None,
        mask_fill_value: ColorType | None = None,
        fill: DropoutFillValue = 0,
        fill_mask: ColorType | None = None,
        p: float = 0.5,
        always_apply: bool | None = None,
    ):
        super().__init__(p=p, fill=fill, fill_mask=fill_mask)
        self.num_masks_x = cast(tuple[int, int], num_masks_x)
        self.num_masks_y = cast(tuple[int, int], num_masks_y)

        self.mask_x_length = cast(tuple[int, int], mask_x_length)
        self.mask_y_length = cast(tuple[int, int], mask_y_length)

    def validate_mask_length(
        self,
        mask_length: tuple[int, int] | None,
        dimension_size: int,
        dimension_name: str,
    ) -> None:
        """Validate the mask length against the corresponding image dimension size."""
        if mask_length is not None:
            if isinstance(mask_length, (tuple, list)):
                if mask_length[0] < 0 or mask_length[1] > dimension_size:
                    raise ValueError(
                        f"{dimension_name} range {mask_length} is out of valid range [0, {dimension_size}]",
                    )
            elif mask_length < 0 or mask_length > dimension_size:
                raise ValueError(f"{dimension_name} {mask_length} exceeds image {dimension_name} {dimension_size}")

    def get_params_dependent_on_data(
        self,
        params: dict[str, Any],
        data: dict[str, Any],
    ) -> dict[str, np.ndarray]:
        image_shape = params["shape"][:2]

        height, width = image_shape

        self.validate_mask_length(self.mask_x_length, width, "mask_x_length")
        self.validate_mask_length(self.mask_y_length, height, "mask_y_length")

        masks_x = self.generate_masks(self.num_masks_x, image_shape, self.mask_x_length, axis="x")
        masks_y = self.generate_masks(self.num_masks_y, image_shape, self.mask_y_length, axis="y")

        holes = np.array(masks_x + masks_y)

        return {"holes": holes, "seed": self.random_generator.integers(0, 2**32 - 1)}

    def generate_mask_size(self, mask_length: tuple[int, int]) -> int:
        return self.py_random.randint(*mask_length)

    def generate_masks(
        self,
        num_masks: tuple[int, int],
        image_shape: tuple[int, int],
        max_length: tuple[int, int] | None,
        axis: str,
    ) -> list[tuple[int, int, int, int]]:
        if max_length is None or max_length == 0 or isinstance(num_masks, (int, float)) and num_masks == 0:
            return []

        masks = []
        num_masks_integer = (
            num_masks if isinstance(num_masks, int) else self.py_random.randint(num_masks[0], num_masks[1])
        )

        height, width = image_shape

        for _ in range(num_masks_integer):
            length = self.generate_mask_size(max_length)

            if axis == "x":
                x_min = self.py_random.randint(0, width - length)
                y_min = 0
                x_max, y_max = x_min + length, height
            else:  # axis == 'y'
                y_min = self.py_random.randint(0, height - length)
                x_min = 0
                x_max, y_max = width, y_min + length

            masks.append((x_min, y_min, x_max, y_max))
        return masks

    def get_transform_init_args_names(self) -> tuple[str, ...]:
        return (
            "num_masks_x",
            "num_masks_y",
            "mask_x_length",
            "mask_y_length",
            "fill",
            "fill_mask",
        )