XYMasking augmentation (augmentations.dropout.xy_masking)¶
class XYMasking
(num_masks_x=0, num_masks_y=0, mask_x_length=0, mask_y_length=0, fill=0, fill_mask=None, p=0.5)
[view source on GitHub] ΒΆ
Applies masking strips to an image, either horizontally (X axis) or vertically (Y axis), simulating occlusions. This transform is useful for training models to recognize images with varied visibility conditions. It's particularly effective for spectrogram images, allowing spectral and frequency masking to improve model robustness.
At least one of max_x_length
or max_y_length
must be specified, dictating the mask's maximum size along each axis.
Parameters:
Name | Type | Description |
---|---|---|
num_masks_x | int | tuple[int, int] | Number or range of horizontal regions to mask. Defaults to 0. |
num_masks_y | int | tuple[int, int] | Number or range of vertical regions to mask. Defaults to 0. |
mask_x_length | int | tuple[int, int] | Specifies the length of the masks along the X (horizontal) axis. If an integer is provided, it sets a fixed mask length. If a tuple of two integers (min, max) is provided, the mask length is randomly chosen within this range for each mask. This allows for variable-length masks in the horizontal direction. |
mask_y_length | int | tuple[int, int] | Specifies the height of the masks along the Y (vertical) axis. Similar to |
fill | ColorType | Literal["random", "random_uniform", "inpaint_telea", "inpaint_ns"] | Value for the dropped pixels. Can be: - int or float: all channels are filled with this value - tuple: tuple of values for each channel - 'random': each pixel is filled with random values - 'random_uniform': each hole is filled with a single random color - 'inpaint_telea': uses OpenCV Telea inpainting method - 'inpaint_ns': uses OpenCV Navier-Stokes inpainting method Default: 0 |
fill_mask | ColorType | None | Fill value for dropout regions in the mask. If None, mask regions corresponding to image dropouts are unchanged. Default: None |
p | float | Probability of applying the transform. Defaults to 0.5. |
Targets
image, mask, bboxes, keypoints, volume, mask3d
Image types: uint8, float32
Note: Either max_x_length
or max_y_length
or both must be defined.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/dropout/xy_masking.py
class XYMasking(BaseDropout):
"""Applies masking strips to an image, either horizontally (X axis) or vertically (Y axis),
simulating occlusions. This transform is useful for training models to recognize images
with varied visibility conditions. It's particularly effective for spectrogram images,
allowing spectral and frequency masking to improve model robustness.
At least one of `max_x_length` or `max_y_length` must be specified, dictating the mask's
maximum size along each axis.
Args:
num_masks_x (int | tuple[int, int]): Number or range of horizontal regions to mask. Defaults to 0.
num_masks_y (int | tuple[int, int]): Number or range of vertical regions to mask. Defaults to 0.
mask_x_length (int | tuple[int, int]): Specifies the length of the masks along
the X (horizontal) axis. If an integer is provided, it sets a fixed mask length.
If a tuple of two integers (min, max) is provided,
the mask length is randomly chosen within this range for each mask.
This allows for variable-length masks in the horizontal direction.
mask_y_length (int | tuple[int, int]): Specifies the height of the masks along
the Y (vertical) axis. Similar to `mask_x_length`, an integer sets a fixed mask height,
while a tuple (min, max) allows for variable-height masks, chosen randomly
within the specified range for each mask. This flexibility facilitates creating masks of various
sizes in the vertical direction.
fill (ColorType | Literal["random", "random_uniform", "inpaint_telea", "inpaint_ns"]):
Value for the dropped pixels. Can be:
- int or float: all channels are filled with this value
- tuple: tuple of values for each channel
- 'random': each pixel is filled with random values
- 'random_uniform': each hole is filled with a single random color
- 'inpaint_telea': uses OpenCV Telea inpainting method
- 'inpaint_ns': uses OpenCV Navier-Stokes inpainting method
Default: 0
fill_mask (ColorType | None): Fill value for dropout regions in the mask.
If None, mask regions corresponding to image dropouts are unchanged. Default: None
p (float): Probability of applying the transform. Defaults to 0.5.
Targets:
image, mask, bboxes, keypoints, volume, mask3d
Image types:
uint8, float32
Note: Either `max_x_length` or `max_y_length` or both must be defined.
"""
class InitSchema(BaseTransformInitSchema):
num_masks_x: NonNegativeIntRangeType
num_masks_y: NonNegativeIntRangeType
mask_x_length: NonNegativeIntRangeType
mask_y_length: NonNegativeIntRangeType
fill: DropoutFillValue
fill_mask: ColorType | None
@model_validator(mode="after")
def check_mask_length(self) -> Self:
if (
isinstance(self.mask_x_length, int)
and self.mask_x_length <= 0
and isinstance(self.mask_y_length, int)
and self.mask_y_length <= 0
):
msg = "At least one of `mask_x_length` or `mask_y_length` Should be a positive number."
raise ValueError(msg)
return self
def __init__(
self,
num_masks_x: ScaleIntType = 0,
num_masks_y: ScaleIntType = 0,
mask_x_length: ScaleIntType = 0,
mask_y_length: ScaleIntType = 0,
fill: DropoutFillValue = 0,
fill_mask: ColorType | None = None,
p: float = 0.5,
):
super().__init__(p=p, fill=fill, fill_mask=fill_mask)
self.num_masks_x = cast(tuple[int, int], num_masks_x)
self.num_masks_y = cast(tuple[int, int], num_masks_y)
self.mask_x_length = cast(tuple[int, int], mask_x_length)
self.mask_y_length = cast(tuple[int, int], mask_y_length)
def validate_mask_length(
self,
mask_length: tuple[int, int] | None,
dimension_size: int,
dimension_name: str,
) -> None:
"""Validate the mask length against the corresponding image dimension size."""
if mask_length is not None:
if isinstance(mask_length, (tuple, list)):
if mask_length[0] < 0 or mask_length[1] > dimension_size:
raise ValueError(
f"{dimension_name} range {mask_length} is out of valid range [0, {dimension_size}]",
)
elif mask_length < 0 or mask_length > dimension_size:
raise ValueError(f"{dimension_name} {mask_length} exceeds image {dimension_name} {dimension_size}")
def get_params_dependent_on_data(
self,
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, np.ndarray]:
image_shape = params["shape"][:2]
height, width = image_shape
self.validate_mask_length(self.mask_x_length, width, "mask_x_length")
self.validate_mask_length(self.mask_y_length, height, "mask_y_length")
masks_x = self.generate_masks(self.num_masks_x, image_shape, self.mask_x_length, axis="x")
masks_y = self.generate_masks(self.num_masks_y, image_shape, self.mask_y_length, axis="y")
holes = np.array(masks_x + masks_y)
return {"holes": holes, "seed": self.random_generator.integers(0, 2**32 - 1)}
def generate_mask_size(self, mask_length: tuple[int, int]) -> int:
return self.py_random.randint(*mask_length)
def generate_masks(
self,
num_masks: tuple[int, int],
image_shape: tuple[int, int],
max_length: tuple[int, int] | None,
axis: str,
) -> list[tuple[int, int, int, int]]:
if max_length is None or max_length == 0 or (isinstance(num_masks, (int, float)) and num_masks == 0):
return []
masks = []
num_masks_integer = (
num_masks if isinstance(num_masks, int) else self.py_random.randint(num_masks[0], num_masks[1])
)
height, width = image_shape
for _ in range(num_masks_integer):
length = self.generate_mask_size(max_length)
if axis == "x":
x_min = self.py_random.randint(0, width - length)
y_min = 0
x_max, y_max = x_min + length, height
else: # axis == 'y'
y_min = self.py_random.randint(0, height - length)
x_min = 0
x_max, y_max = width, y_min + length
masks.append((x_min, y_min, x_max, y_max))
return masks
def get_transform_init_args_names(self) -> tuple[str, ...]:
return (
"num_masks_x",
"num_masks_y",
"mask_x_length",
"mask_y_length",
"fill",
"fill_mask",
)