GridDropout augmentation (augmentations.dropout.grid_dropout)¶
class GridDropout
(ratio=0.5, random_offset=True, unit_size_range=None, holes_number_xy=None, shift_xy=(0, 0), fill=0, fill_mask=None, p=0.5)
[view source on GitHub] ΒΆ
Apply GridDropout augmentation to images, masks, bounding boxes, and keypoints.
GridDropout drops out rectangular regions of an image and the corresponding mask in a grid fashion. This technique can help improve model robustness by forcing the network to rely on a broader context rather than specific local features.
Parameters:
Name | Type | Description |
---|---|---|
ratio | float | The ratio of the mask holes to the unit size (same for horizontal and vertical directions). Must be between 0 and 1. Default: 0.5. |
unit_size_range | tuple[int, int] | None | Range from which to sample grid size. Default: None. Must be between 2 and the image's shorter edge. If None, grid size is calculated based on image size. |
holes_number_xy | tuple[int, int] | None | The number of grid units in x and y directions. First value should be between 1 and image width//2, Second value should be between 1 and image height//2. Default: None. If provided, overrides unit_size_range. |
random_offset | bool | Whether to offset the grid randomly between 0 and (grid unit size - hole size). If True, entered shift_xy is ignored and set randomly. Default: True. |
fill | ColorType | Literal["random", "random_uniform", "inpaint_telea", "inpaint_ns"] | Value for the dropped pixels. Can be: - int or float: all channels are filled with this value - tuple: tuple of values for each channel - 'random': each pixel is filled with random values - 'random_uniform': each hole is filled with a single random color - 'inpaint_telea': uses OpenCV Telea inpainting method - 'inpaint_ns': uses OpenCV Navier-Stokes inpainting method Default: 0 |
fill_mask | ColorType | None | Value for the dropped pixels in mask. If None, the mask is not modified. Default: None. |
shift_xy | tuple[int, int] | Offsets of the grid start in x and y directions from (0,0) coordinate. Only used when random_offset is False. Default: (0, 0). |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image, mask, bboxes, keypoints, volume, mask3d
Image types: uint8, float32
Note
- If both unit_size_range and holes_number_xy are None, the grid size is calculated based on the image size.
- The actual number of dropped regions may differ slightly from holes_number_xy due to rounding.
- Inpainting methods ('inpaint_telea', 'inpaint_ns') work only with grayscale or RGB images.
- For 'random_uniform' fill, each grid cell gets a single random color, unlike 'random' where each pixel gets its own random value.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> mask = np.random.randint(0, 2, (100, 100), dtype=np.uint8)
>>> # Example with standard fill value
>>> aug_basic = A.GridDropout(
... ratio=0.3,
... unit_size_range=(10, 20),
... random_offset=True,
... p=1.0
... )
>>> # Example with random uniform fill
>>> aug_random = A.GridDropout(
... ratio=0.3,
... unit_size_range=(10, 20),
... fill="random_uniform",
... p=1.0
... )
>>> # Example with inpainting
>>> aug_inpaint = A.GridDropout(
... ratio=0.3,
... unit_size_range=(10, 20),
... fill="inpaint_ns",
... p=1.0
... )
>>> transformed = aug_random(image=image, mask=mask)
>>> transformed_image, transformed_mask = transformed["image"], transformed["mask"]
Reference
- Paper: https://arxiv.org/abs/2001.04086
- OpenCV Inpainting methods: https://docs.opencv.org/master/df/d3d/tutorial_py_inpainting.html
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/dropout/grid_dropout.py
class GridDropout(BaseDropout):
"""Apply GridDropout augmentation to images, masks, bounding boxes, and keypoints.
GridDropout drops out rectangular regions of an image and the corresponding mask in a grid fashion.
This technique can help improve model robustness by forcing the network to rely on a broader context
rather than specific local features.
Args:
ratio (float): The ratio of the mask holes to the unit size (same for horizontal and vertical directions).
Must be between 0 and 1. Default: 0.5.
unit_size_range (tuple[int, int] | None): Range from which to sample grid size. Default: None.
Must be between 2 and the image's shorter edge. If None, grid size is calculated based on image size.
holes_number_xy (tuple[int, int] | None): The number of grid units in x and y directions.
First value should be between 1 and image width//2,
Second value should be between 1 and image height//2.
Default: None. If provided, overrides unit_size_range.
random_offset (bool): Whether to offset the grid randomly between 0 and (grid unit size - hole size).
If True, entered shift_xy is ignored and set randomly. Default: True.
fill (ColorType | Literal["random", "random_uniform", "inpaint_telea", "inpaint_ns"]):
Value for the dropped pixels. Can be:
- int or float: all channels are filled with this value
- tuple: tuple of values for each channel
- 'random': each pixel is filled with random values
- 'random_uniform': each hole is filled with a single random color
- 'inpaint_telea': uses OpenCV Telea inpainting method
- 'inpaint_ns': uses OpenCV Navier-Stokes inpainting method
Default: 0
fill_mask (ColorType | None): Value for the dropped pixels in mask.
If None, the mask is not modified. Default: None.
shift_xy (tuple[int, int]): Offsets of the grid start in x and y directions from (0,0) coordinate.
Only used when random_offset is False. Default: (0, 0).
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image, mask, bboxes, keypoints, volume, mask3d
Image types:
uint8, float32
Note:
- If both unit_size_range and holes_number_xy are None, the grid size is calculated based on the image size.
- The actual number of dropped regions may differ slightly from holes_number_xy due to rounding.
- Inpainting methods ('inpaint_telea', 'inpaint_ns') work only with grayscale or RGB images.
- For 'random_uniform' fill, each grid cell gets a single random color, unlike 'random' where each pixel
gets its own random value.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> mask = np.random.randint(0, 2, (100, 100), dtype=np.uint8)
>>> # Example with standard fill value
>>> aug_basic = A.GridDropout(
... ratio=0.3,
... unit_size_range=(10, 20),
... random_offset=True,
... p=1.0
... )
>>> # Example with random uniform fill
>>> aug_random = A.GridDropout(
... ratio=0.3,
... unit_size_range=(10, 20),
... fill="random_uniform",
... p=1.0
... )
>>> # Example with inpainting
>>> aug_inpaint = A.GridDropout(
... ratio=0.3,
... unit_size_range=(10, 20),
... fill="inpaint_ns",
... p=1.0
... )
>>> transformed = aug_random(image=image, mask=mask)
>>> transformed_image, transformed_mask = transformed["image"], transformed["mask"]
Reference:
- Paper: https://arxiv.org/abs/2001.04086
- OpenCV Inpainting methods: https://docs.opencv.org/master/df/d3d/tutorial_py_inpainting.html
"""
class InitSchema(BaseDropout.InitSchema):
ratio: float = Field(gt=0, le=1)
random_offset: bool
unit_size_range: (
Annotated[tuple[int, int], AfterValidator(check_range_bounds(2, None)), AfterValidator(nondecreasing)]
| None
)
shift_xy: Annotated[tuple[int, int], AfterValidator(check_range_bounds(0, None))]
holes_number_xy: Annotated[tuple[int, int], AfterValidator(check_range_bounds(1, None))] | None
def __init__(
self,
ratio: float = 0.5,
random_offset: bool = True,
unit_size_range: tuple[int, int] | None = None,
holes_number_xy: tuple[int, int] | None = None,
shift_xy: tuple[int, int] = (0, 0),
fill: DropoutFillValue = 0,
fill_mask: ColorType | None = None,
p: float = 0.5,
):
super().__init__(fill=fill, fill_mask=fill_mask, p=p)
self.ratio = ratio
self.unit_size_range = unit_size_range
self.holes_number_xy = holes_number_xy
self.random_offset = random_offset
self.shift_xy = shift_xy
def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
image_shape = params["shape"]
if self.holes_number_xy:
grid = self.holes_number_xy
else:
# Calculate grid based on unit_size_range or default
unit_height, unit_width = fdropout.calculate_grid_dimensions(
image_shape,
self.unit_size_range,
self.holes_number_xy,
self.random_generator,
)
grid = (image_shape[0] // unit_height, image_shape[1] // unit_width)
holes = fdropout.generate_grid_holes(
image_shape,
grid,
self.ratio,
self.random_offset,
self.shift_xy,
self.random_generator,
)
return {"holes": holes, "seed": self.random_generator.integers(0, 2**32 - 1)}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return (
*super().get_transform_init_args_names(),
"ratio",
"unit_size_range",
"holes_number_xy",
"shift_xy",
"random_offset",
)