Domain Adaptation transforms (augmentations.domain_adaptation.transforms)¶
class FDA
(reference_images, beta_limit=(0, 0.1), read_fn=<function read_rgb_image at 0x7fcc36366d40>, p=0.5, always_apply=None)
[view source on GitHub] ΒΆ
Fourier Domain Adaptation (FDA) for simple "style transfer" in the context of unsupervised domain adaptation (UDA). FDA manipulates the frequency components of images to reduce the domain gap between source and target datasets, effectively adapting images from one domain to closely resemble those from another without altering their semantic content.
This transform is particularly beneficial in scenarios where the training (source) and testing (target) images come from different distributions, such as synthetic versus real images, or day versus night scenes. Unlike traditional domain adaptation methods that may require complex adversarial training, FDA achieves domain alignment by swapping low-frequency components of the Fourier transform between the source and target images. This technique has shown to improve the performance of models on the target domain, particularly for tasks like semantic segmentation, without additional training for domain invariance.
The 'beta_limit' parameter controls the extent of frequency component swapping, with lower values preserving more of the original image's characteristics and higher values leading to more pronounced adaptation effects. It is recommended to use beta values less than 0.3 to avoid introducing artifacts.
Parameters:
Name | Type | Description |
---|---|---|
reference_images | Sequence[Any] | Sequence of objects to be converted into images by |
beta_limit | tuple[float, float] | float | Coefficient beta from the paper, controlling the swapping extent of frequency components. If one value is provided beta will be sampled from uniform distribution [0, beta_limit]. Values should be less than 0.5. |
read_fn | Callable | User-defined function for reading images. It takes an element from |
Targets
image
Image types: uint8, float32
Reference
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> target_image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> aug = A.Compose([A.FDA([target_image], p=1, read_fn=lambda x: x)])
>>> result = aug(image=image)
Note
FDA is a powerful tool for domain adaptation, particularly in unsupervised settings where annotated target domain samples are unavailable. It enables significant improvements in model generalization by aligning the low-level statistics of source and target images through a simple yet effective Fourier-based method.
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/domain_adaptation/transforms.py
class FDA(ImageOnlyTransform):
"""Fourier Domain Adaptation (FDA) for simple "style transfer" in the context of unsupervised domain adaptation
(UDA). FDA manipulates the frequency components of images to reduce the domain gap between source
and target datasets, effectively adapting images from one domain to closely resemble those from another without
altering their semantic content.
This transform is particularly beneficial in scenarios where the training (source) and testing (target) images
come from different distributions, such as synthetic versus real images, or day versus night scenes.
Unlike traditional domain adaptation methods that may require complex adversarial training, FDA achieves domain
alignment by swapping low-frequency components of the Fourier transform between the source and target images.
This technique has shown to improve the performance of models on the target domain, particularly for tasks
like semantic segmentation, without additional training for domain invariance.
The 'beta_limit' parameter controls the extent of frequency component swapping, with lower values preserving more
of the original image's characteristics and higher values leading to more pronounced adaptation effects.
It is recommended to use beta values less than 0.3 to avoid introducing artifacts.
Args:
reference_images (Sequence[Any]): Sequence of objects to be converted into images by `read_fn`. This typically
involves paths to images that serve as target domain examples for adaptation.
beta_limit (tuple[float, float] | float): Coefficient beta from the paper, controlling the swapping extent of
frequency components. If one value is provided beta will be sampled from uniform
distribution [0, beta_limit]. Values should be less than 0.5.
read_fn (Callable): User-defined function for reading images. It takes an element from `reference_images` and
returns a numpy array of image pixels. By default, it is expected to take a path to an image and return a
numpy array.
Targets:
image
Image types:
uint8, float32
Reference:
- https://github.com/YanchaoYang/FDA
- https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_FDA_Fourier_Domain_Adaptation_for_Semantic_Segmentation_CVPR_2020_paper.pdf
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> target_image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> aug = A.Compose([A.FDA([target_image], p=1, read_fn=lambda x: x)])
>>> result = aug(image=image)
Note:
FDA is a powerful tool for domain adaptation, particularly in unsupervised settings where annotated target
domain samples are unavailable. It enables significant improvements in model generalization by aligning
the low-level statistics of source and target images through a simple yet effective Fourier-based method.
"""
class InitSchema(BaseTransformInitSchema):
reference_images: Sequence[Any]
read_fn: Callable[[Any], np.ndarray]
beta_limit: ZeroOneRangeType
@field_validator("beta_limit")
@classmethod
def check_ranges(cls, value: tuple[float, float]) -> tuple[float, float]:
bounds = 0, MAX_BETA_LIMIT
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
raise ValueError(f"Values should be in the range {bounds} got {value} ")
return value
def __init__(
self,
reference_images: Sequence[Any],
beta_limit: ScaleFloatType = (0, 0.1),
read_fn: Callable[[Any], np.ndarray] = read_rgb_image,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.reference_images = reference_images
self.read_fn = read_fn
self.beta_limit = cast(tuple[float, float], beta_limit)
def apply(
self,
img: np.ndarray,
target_image: np.ndarray,
beta: float,
**params: Any,
) -> np.ndarray:
return fourier_domain_adaptation(img, target_image, beta)
def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, np.ndarray]:
height, width = params["shape"][:2]
target_img = self.read_fn(self.py_random.choice(self.reference_images))
target_img = cv2.resize(target_img, dsize=(width, height))
return {"target_image": target_img, "beta": self.py_random.uniform(*self.beta_limit)}
def get_transform_init_args_names(self) -> tuple[str, str, str]:
return "reference_images", "beta_limit", "read_fn"
def to_dict_private(self) -> dict[str, Any]:
msg = "FDA can not be serialized."
raise NotImplementedError(msg)
class HistogramMatching
(reference_images, blend_ratio=(0.5, 1.0), read_fn=<function read_rgb_image at 0x7fcc36366d40>, p=0.5, always_apply=None)
[view source on GitHub] ΒΆ
Adjust the pixel values of an input image to match the histogram of a reference image.
This transform applies histogram matching, a technique that modifies the distribution of pixel intensities in the input image to closely resemble that of a reference image. This process is performed independently for each channel in multi-channel images, provided both the input and reference images have the same number of channels.
Histogram matching is particularly useful for: - Normalizing images from different sources or captured under varying conditions. - Preparing images for feature matching or other computer vision tasks where consistent tone and contrast are important. - Simulating different lighting or camera conditions in a controlled manner.
Parameters:
Name | Type | Description |
---|---|---|
reference_images | Sequence[Any] | A sequence of reference image sources. These can be file paths, URLs, or any objects that can be converted to images by the |
blend_ratio | tuple[float, float] | Range for the blending factor between the original and the matched image. Must be two floats between 0 and 1, where: - 0 means no blending (original image is returned) - 1 means full histogram matching A random value within this range is chosen for each application. Default: (0.5, 1.0) |
read_fn | Callable[[Any], np.ndarray] | A function that takes an element from |
p | float | Probability of applying the transform. Default: 0.5 |
Targets
image
Image types: uint8, float32
Note
- This transform cannot be directly serialized due to its dependency on external image data.
- The effectiveness of the matching depends on the similarity between the input and reference images.
- For best results, choose reference images that represent the desired tone and contrast.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> reference_image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> transform = A.HistogramMatching(
... reference_images=[reference_image],
... blend_ratio=(0.5, 1.0),
... read_fn=lambda x: x,
... p=1
... )
>>> result = transform(image=image)
>>> matched_image = result["image"]
References
- Histogram Matching in scikit-image: https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_histogram_matching.html
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/domain_adaptation/transforms.py
class HistogramMatching(ImageOnlyTransform):
"""Adjust the pixel values of an input image to match the histogram of a reference image.
This transform applies histogram matching, a technique that modifies the distribution of pixel
intensities in the input image to closely resemble that of a reference image. This process is
performed independently for each channel in multi-channel images, provided both the input and
reference images have the same number of channels.
Histogram matching is particularly useful for:
- Normalizing images from different sources or captured under varying conditions.
- Preparing images for feature matching or other computer vision tasks where consistent
tone and contrast are important.
- Simulating different lighting or camera conditions in a controlled manner.
Args:
reference_images (Sequence[Any]): A sequence of reference image sources. These can be
file paths, URLs, or any objects that can be converted to images by the `read_fn`.
blend_ratio (tuple[float, float]): Range for the blending factor between the original
and the matched image. Must be two floats between 0 and 1, where:
- 0 means no blending (original image is returned)
- 1 means full histogram matching
A random value within this range is chosen for each application.
Default: (0.5, 1.0)
read_fn (Callable[[Any], np.ndarray]): A function that takes an element from
`reference_images` and returns a numpy array representing the image.
Default: read_rgb_image (reads image file from disk)
p (float): Probability of applying the transform. Default: 0.5
Targets:
image
Image types:
uint8, float32
Note:
- This transform cannot be directly serialized due to its dependency on external image data.
- The effectiveness of the matching depends on the similarity between the input and reference images.
- For best results, choose reference images that represent the desired tone and contrast.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> reference_image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> transform = A.HistogramMatching(
... reference_images=[reference_image],
... blend_ratio=(0.5, 1.0),
... read_fn=lambda x: x,
... p=1
... )
>>> result = transform(image=image)
>>> matched_image = result["image"]
References:
- Histogram Matching in scikit-image:
https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_histogram_matching.html
"""
class InitSchema(BaseTransformInitSchema):
reference_images: Sequence[Any]
blend_ratio: Annotated[
tuple[float, float],
AfterValidator(nondecreasing),
AfterValidator(check_range_bounds(0, 1)),
]
read_fn: Callable[[Any], np.ndarray]
def __init__(
self,
reference_images: Sequence[Any],
blend_ratio: tuple[float, float] = (0.5, 1.0),
read_fn: Callable[[Any], np.ndarray] = read_rgb_image,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.reference_images = reference_images
self.read_fn = read_fn
self.blend_ratio = blend_ratio
def apply(
self: np.ndarray,
img: np.ndarray,
reference_image: np.ndarray,
blend_ratio: float,
**params: Any,
) -> np.ndarray:
return apply_histogram(img, reference_image, blend_ratio)
def get_params(self) -> dict[str, np.ndarray]:
return {
"reference_image": self.read_fn(self.py_random.choice(self.reference_images)),
"blend_ratio": self.py_random.uniform(*self.blend_ratio),
}
def get_transform_init_args_names(self) -> tuple[str, ...]:
return "reference_images", "blend_ratio", "read_fn"
def to_dict_private(self) -> dict[str, Any]:
msg = "HistogramMatching can not be serialized."
raise NotImplementedError(msg)
class PixelDistributionAdaptation
(reference_images, blend_ratio=(0.25, 1.0), read_fn=<function read_rgb_image at 0x7fcc36366d40>, transform_type='pca', p=0.5, always_apply=None)
[view source on GitHub] ΒΆ
Performs pixel-level domain adaptation by aligning the pixel value distribution of an input image with that of a reference image. This process involves fitting a simple statistical transformation (such as PCA, StandardScaler, or MinMaxScaler) to both the original and the reference images, transforming the original image with the transformation trained on it, and then applying the inverse transformation using the transform fitted on the reference image. The result is an adapted image that retains the original content while mimicking the pixel value distribution of the reference domain.
The process can be visualized as two main steps: 1. Adjusting the original image to a standard distribution space using a selected transform. 2. Moving the adjusted image into the distribution space of the reference image by applying the inverse of the transform fitted on the reference image.
This technique is especially useful in scenarios where images from different domains (e.g., synthetic vs. real images, day vs. night scenes) need to be harmonized for better consistency or performance in image processing tasks.
Parameters:
Name | Type | Description |
---|---|---|
reference_images | Sequence[Any] | A sequence of objects (typically image paths) that will be converted into images by |
blend_ratio | tuple[float, float] | Specifies the minimum and maximum blend ratio for mixing the adapted image with the original. This enhances the diversity of the output images. Values should be in the range [0, 1]. Default: (0.25, 1.0) |
read_fn | Callable | A user-defined function for reading and converting the objects in |
transform_type | Literal["pca", "standard", "minmax"] | Specifies the type of statistical transformation to apply. - "pca": Principal Component Analysis - "standard": StandardScaler (zero mean and unit variance) - "minmax": MinMaxScaler (scales to a fixed range, usually [0, 1]) Default: "pca" |
p | float | The probability of applying the transform to any given image. Default: 0.5 |
Targets
image
Image types: uint8, float32
Number of channels: Any
Note
- The effectiveness of the adaptation depends on the similarity between the input and reference domains.
- PCA transformation may alter color relationships more significantly than other methods.
- StandardScaler and MinMaxScaler preserve color relationships better but may provide less dramatic adaptations.
- The blend_ratio parameter allows for a smooth transition between the original and fully adapted image.
- This transform cannot be directly serialized due to its dependency on external image data.
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> reference_image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> transform = A.PixelDistributionAdaptation(
... reference_images=[reference_image],
... blend_ratio=(0.5, 1.0),
... transform_type="standard",
... read_fn=lambda x: x,
... p=1.0
... )
>>> result = transform(image=image)
>>> adapted_image = result["image"]
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/domain_adaptation/transforms.py
class PixelDistributionAdaptation(ImageOnlyTransform):
"""Performs pixel-level domain adaptation by aligning the pixel value distribution of an input image
with that of a reference image. This process involves fitting a simple statistical transformation
(such as PCA, StandardScaler, or MinMaxScaler) to both the original and the reference images,
transforming the original image with the transformation trained on it, and then applying the inverse
transformation using the transform fitted on the reference image. The result is an adapted image
that retains the original content while mimicking the pixel value distribution of the reference domain.
The process can be visualized as two main steps:
1. Adjusting the original image to a standard distribution space using a selected transform.
2. Moving the adjusted image into the distribution space of the reference image by applying the inverse
of the transform fitted on the reference image.
This technique is especially useful in scenarios where images from different domains (e.g., synthetic
vs. real images, day vs. night scenes) need to be harmonized for better consistency or performance in
image processing tasks.
Args:
reference_images (Sequence[Any]): A sequence of objects (typically image paths) that will be
converted into images by `read_fn`. These images serve as references for the domain adaptation.
blend_ratio (tuple[float, float]): Specifies the minimum and maximum blend ratio for mixing
the adapted image with the original. This enhances the diversity of the output images.
Values should be in the range [0, 1]. Default: (0.25, 1.0)
read_fn (Callable): A user-defined function for reading and converting the objects in
`reference_images` into numpy arrays. By default, it assumes these objects are image paths.
transform_type (Literal["pca", "standard", "minmax"]): Specifies the type of statistical
transformation to apply.
- "pca": Principal Component Analysis
- "standard": StandardScaler (zero mean and unit variance)
- "minmax": MinMaxScaler (scales to a fixed range, usually [0, 1])
Default: "pca"
p (float): The probability of applying the transform to any given image. Default: 0.5
Targets:
image
Image types:
uint8, float32
Number of channels:
Any
Note:
- The effectiveness of the adaptation depends on the similarity between the input and reference domains.
- PCA transformation may alter color relationships more significantly than other methods.
- StandardScaler and MinMaxScaler preserve color relationships better but may provide less dramatic adaptations.
- The blend_ratio parameter allows for a smooth transition between the original and fully adapted image.
- This transform cannot be directly serialized due to its dependency on external image data.
Example:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> reference_image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8)
>>> transform = A.PixelDistributionAdaptation(
... reference_images=[reference_image],
... blend_ratio=(0.5, 1.0),
... transform_type="standard",
... read_fn=lambda x: x,
... p=1.0
... )
>>> result = transform(image=image)
>>> adapted_image = result["image"]
References:
- https://github.com/arsenyinfo/qudida
- https://arxiv.org/abs/1911.11483
"""
class InitSchema(BaseTransformInitSchema):
reference_images: Sequence[Any]
blend_ratio: Annotated[
tuple[float, float],
AfterValidator(nondecreasing),
AfterValidator(check_range_bounds(0, 1)),
]
read_fn: Callable[[Any], np.ndarray]
transform_type: Literal["pca", "standard", "minmax"]
def __init__(
self,
reference_images: Sequence[Any],
blend_ratio: tuple[float, float] = (0.25, 1.0),
read_fn: Callable[[Any], np.ndarray] = read_rgb_image,
transform_type: Literal["pca", "standard", "minmax"] = "pca",
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.reference_images = reference_images
self.read_fn = read_fn
self.blend_ratio = blend_ratio
self.transform_type = transform_type
def apply(self, img: np.ndarray, reference_image: np.ndarray, blend_ratio: float, **params: Any) -> np.ndarray:
return adapt_pixel_distribution(
img,
ref=reference_image,
weight=blend_ratio,
transform_type=self.transform_type,
)
def get_params(self) -> dict[str, Any]:
return {
"reference_image": self.read_fn(self.py_random.choice(self.reference_images)),
"blend_ratio": self.py_random.uniform(*self.blend_ratio),
}
def get_transform_init_args_names(self) -> tuple[str, str, str, str]:
return "reference_images", "blend_ratio", "read_fn", "transform_type"
def to_dict_private(self) -> dict[str, Any]:
msg = "PixelDistributionAdaptation can not be serialized."
raise NotImplementedError(msg)
class TemplateTransform
(templates, img_weight=(0.5, 0.5), template_weight=None, template_transform=None, name=None, p=0.5, always_apply=None)
[view source on GitHub] ΒΆ
Apply blending of input image with specified templates.
This transform overlays one or more template images onto the input image using alpha blending. It allows for creating complex composite images or simulating various visual effects.
Parameters:
Name | Type | Description |
---|---|---|
templates | numpy array | list[np.ndarray] | Images to use as templates for the transform. If a single numpy array is provided, it will be used as the only template. If a list of numpy arrays is provided, one will be randomly chosen for each application. |
img_weight | tuple[float, float] | float | Weight of the original image in the blend. If a single float, that value will always be used. If a tuple (min, max), the weight will be randomly sampled from the range [min, max) for each application. To use a fixed weight, use (weight, weight). Default: (0.5, 0.5). |
template_transform | A.Compose | None | A composition of Albumentations transforms to apply to the template before blending. This should be an instance of A.Compose containing one or more Albumentations transforms. Default: None. |
name | str | None | Name of the transform instance. Used for serialization purposes. Default: None. |
p | float | Probability of applying the transform. Default: 0.5. |
Targets
image
Image types: uint8, float32
Number of channels: Any
Note
- The template(s) must have the same number of channels as the input image or be single-channel.
- If a single-channel template is used with a multi-channel image, the template will be replicated across all channels.
- The template(s) will be resized to match the input image size if they differ.
- To make this transform serializable, provide a name when initializing it.
Mathematical Formulation: Given: - I: Input image - T: Template image - w_i: Weight of input image (sampled from img_weight)
The blended image B is computed as:
B = w_i * I + (1 - w_i) * T
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> template = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
Apply template transform with a single template¶
>>> transform = A.TemplateTransform(templates=template, name="my_template_transform", p=1.0)
>>> blended_image = transform(image=image)['image']
Apply template transform with multiple templates and custom weights¶
>>> templates = [np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8) for _ in range(3)]
>>> transform = A.TemplateTransform(
... templates=templates,
... img_weight=(0.3, 0.7),
... name="multi_template_transform",
... p=1.0
... )
>>> blended_image = transform(image=image)['image']
Apply template transform with additional transforms on the template¶
>>> template_transform = A.Compose([A.RandomBrightnessContrast(p=1)])
>>> transform = A.TemplateTransform(
... templates=template,
... img_weight=0.6,
... template_transform=template_transform,
... name="transformed_template",
... p=1.0
... )
>>> blended_image = transform(image=image)['image']
References
- Alpha compositing: https://en.wikipedia.org/wiki/Alpha_compositing
- Image blending: https://en.wikipedia.org/wiki/Image_blending
Interactive Tool Available!
Explore this transform visually and adjust parameters interactively using this tool:
Source code in albumentations/augmentations/domain_adaptation/transforms.py
class TemplateTransform(ImageOnlyTransform):
"""Apply blending of input image with specified templates.
This transform overlays one or more template images onto the input image using alpha blending.
It allows for creating complex composite images or simulating various visual effects.
Args:
templates (numpy array | list[np.ndarray]): Images to use as templates for the transform.
If a single numpy array is provided, it will be used as the only template.
If a list of numpy arrays is provided, one will be randomly chosen for each application.
img_weight (tuple[float, float] | float): Weight of the original image in the blend.
If a single float, that value will always be used.
If a tuple (min, max), the weight will be randomly sampled from the range [min, max) for each application.
To use a fixed weight, use (weight, weight).
Default: (0.5, 0.5).
template_transform (A.Compose | None): A composition of Albumentations transforms to apply to the template
before blending.
This should be an instance of A.Compose containing one or more Albumentations transforms.
Default: None.
name (str | None): Name of the transform instance. Used for serialization purposes.
Default: None.
p (float): Probability of applying the transform. Default: 0.5.
Targets:
image
Image types:
uint8, float32
Number of channels:
Any
Note:
- The template(s) must have the same number of channels as the input image or be single-channel.
- If a single-channel template is used with a multi-channel image, the template will be replicated across
all channels.
- The template(s) will be resized to match the input image size if they differ.
- To make this transform serializable, provide a name when initializing it.
Mathematical Formulation:
Given:
- I: Input image
- T: Template image
- w_i: Weight of input image (sampled from img_weight)
The blended image B is computed as:
B = w_i * I + (1 - w_i) * T
Examples:
>>> import numpy as np
>>> import albumentations as A
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> template = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
# Apply template transform with a single template
>>> transform = A.TemplateTransform(templates=template, name="my_template_transform", p=1.0)
>>> blended_image = transform(image=image)['image']
# Apply template transform with multiple templates and custom weights
>>> templates = [np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8) for _ in range(3)]
>>> transform = A.TemplateTransform(
... templates=templates,
... img_weight=(0.3, 0.7),
... name="multi_template_transform",
... p=1.0
... )
>>> blended_image = transform(image=image)['image']
# Apply template transform with additional transforms on the template
>>> template_transform = A.Compose([A.RandomBrightnessContrast(p=1)])
>>> transform = A.TemplateTransform(
... templates=template,
... img_weight=0.6,
... template_transform=template_transform,
... name="transformed_template",
... p=1.0
... )
>>> blended_image = transform(image=image)['image']
References:
- Alpha compositing: https://en.wikipedia.org/wiki/Alpha_compositing
- Image blending: https://en.wikipedia.org/wiki/Image_blending
"""
class InitSchema(BaseTransformInitSchema):
templates: np.ndarray | Sequence[np.ndarray]
img_weight: ZeroOneRangeType
template_weight: ZeroOneRangeType | None = Field(
deprecated="Template_weight is deprecated. Computed automatically as (1 - img_weight)",
)
template_transform: Compose | BasicTransform | None = None
name: str | None
@field_validator("templates")
@classmethod
def validate_templates(cls, v: np.ndarray | list[np.ndarray]) -> list[np.ndarray]:
if isinstance(v, np.ndarray):
return [v]
if isinstance(v, list):
if not all(isinstance(item, np.ndarray) for item in v):
msg = "All templates must be numpy arrays."
raise ValueError(msg)
return v
msg = "Templates must be a numpy array or a list of numpy arrays."
raise TypeError(msg)
def __init__(
self,
templates: np.ndarray | list[np.ndarray],
img_weight: ScaleFloatType = (0.5, 0.5),
template_weight: None = None,
template_transform: Compose | BasicTransform | None = None,
name: str | None = None,
p: float = 0.5,
always_apply: bool | None = None,
):
super().__init__(p=p, always_apply=always_apply)
self.templates = templates
self.img_weight = cast(tuple[float, float], img_weight)
self.template_transform = template_transform
self.name = name
def apply(
self,
img: np.ndarray,
template: np.ndarray,
img_weight: float,
**params: Any,
) -> np.ndarray:
if img_weight == 0:
return template
if img_weight == 1:
return img
return add_weighted(img, img_weight, template, 1 - img_weight)
def get_params(self) -> dict[str, float]:
return {
"img_weight": self.py_random.uniform(*self.img_weight),
}
def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
image = data["image"] if "image" in data else data["images"][0]
template = self.py_random.choice(self.templates)
if self.template_transform is not None:
template = self.template_transform(image=template)["image"]
if get_num_channels(template) not in [1, get_num_channels(image)]:
msg = (
"Template must be a single channel or "
"has the same number of channels as input "
f"image ({get_num_channels(image)}), got {get_num_channels(template)}"
)
raise ValueError(msg)
if template.dtype != image.dtype:
msg = "Image and template must be the same image type"
raise ValueError(msg)
if image.shape[:2] != template.shape[:2]:
template = fgeometric.resize(template, image.shape[:2], interpolation=cv2.INTER_AREA)
if get_num_channels(template) == 1 and get_num_channels(image) > 1:
# Replicate single channel template across all channels to match input image
template = cv2.merge([template] * get_num_channels(image))
# in order to support grayscale image with dummy dim
template = template.reshape(image.shape)
return {"template": template}
@classmethod
def is_serializable(cls) -> bool:
return False
def to_dict_private(self) -> dict[str, Any]:
if self.name is None:
msg = (
"To make a TemplateTransform serializable you should provide the `name` argument, "
"e.g. `TemplateTransform(name='my_transform', ...)`."
)
raise ValueError(msg)
return {"__class_fullname__": self.get_class_fullname(), "__name__": self.name}