Skip to content

Blur transforms (augmentations.blur.transforms)

class albumentations.augmentations.blur.transforms.AdvancedBlur (blur_limit=(3, 7), sigmaX_limit=(0.2, 1.0), sigmaY_limit=(0.2, 1.0), rotate_limit=90, beta_limit=(0.5, 8.0), noise_limit=(0.9, 1.1), always_apply=False, p=0.5) [view source on GitHub]

Blur the input image using a Generalized Normal filter with a randomly selected parameters. This transform also adds multiplicative noise to generated kernel before convolution.

Parameters:

Name Type Description
blur_limit

maximum Gaussian kernel size for blurring the input image. Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma as round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1. If set single value blur_limit will be in range (0, blur_limit). Default: (3, 7).

sigmaX_limit

Gaussian kernel standard deviation. Must be in range [0, inf). If set single value sigmaX_limit will be in range (0, sigma_limit). If set to 0 sigma will be computed as sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8. Default: 0.

sigmaY_limit

Same as sigmaY_limit for another dimension.

rotate_limit

Range from which a random angle used to rotate Gaussian kernel is picked. If limit is a single int an angle is picked from (-rotate_limit, rotate_limit). Default: (-90, 90).

beta_limit

Distribution shape parameter, 1 is the normal distribution. Values below 1.0 make distribution tails heavier than normal, values above 1.0 make it lighter than normal. Default: (0.5, 8.0).

noise_limit

Multiplicative factor that control strength of kernel noise. Must be positive and preferably centered around 1.0. If set single value noise_limit will be in range (0, noise_limit). Default: (0.75, 1.25).

p float

probability of applying the transform. Default: 0.5.

Reference: https://arxiv.org/abs/2107.10833

Targets: image Image types: uint8, float32

class albumentations.augmentations.blur.transforms.Blur (blur_limit=7, always_apply=False, p=0.5) [view source on GitHub]

Blur the input image using a random-sized kernel.

Parameters:

Name Type Description
blur_limit int, [int, int]

maximum kernel size for blurring the input image. Should be in range [3, inf). Default: (3, 7).

p float

probability of applying the transform. Default: 0.5.

Targets: image

Image types: uint8, float32

class albumentations.augmentations.blur.transforms.Defocus (radius=(3, 10), alias_blur=(0.1, 0.5), always_apply=False, p=0.5) [view source on GitHub]

Apply defocus transform. See https://arxiv.org/abs/1903.12261.

Parameters:

Name Type Description
radius [int, int] or int

range for radius of defocusing. If limit is a single int, the range will be [1, limit]. Default: (3, 10).

alias_blur [float, float] or float

range for alias_blur of defocusing (sigma of gaussian blur). If limit is a single float, the range will be (0, limit). Default: (0.1, 0.5).

p float

probability of applying the transform. Default: 0.5.

Targets: image

Image types: Any

class albumentations.augmentations.blur.transforms.GaussianBlur (blur_limit=(3, 7), sigma_limit=0, always_apply=False, p=0.5) [view source on GitHub]

Blur the input image using a Gaussian filter with a random kernel size.

Parameters:

Name Type Description
blur_limit int, [int, int]

maximum Gaussian kernel size for blurring the input image. Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma as round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1. If set single value blur_limit will be in range (0, blur_limit). Default: (3, 7).

sigma_limit float, [float, float]

Gaussian kernel standard deviation. Must be in range [0, inf). If set single value sigma_limit will be in range (0, sigma_limit). If set to 0 sigma will be computed as sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8. Default: 0.

p float

probability of applying the transform. Default: 0.5.

Targets: image

Image types: uint8, float32

class albumentations.augmentations.blur.transforms.GlassBlur (sigma=0.7, max_delta=4, iterations=2, always_apply=False, mode='fast', p=0.5) [view source on GitHub]

Apply glass noise to the input image.

Parameters:

Name Type Description
sigma float

standard deviation for Gaussian kernel.

max_delta int

max distance between pixels which are swapped.

iterations int

number of repeats. Should be in range [1, inf). Default: (2).

mode str

mode of computation: fast or exact. Default: "fast".

p float

probability of applying the transform. Default: 0.5.

Targets: image

Image types: uint8, float32

Reference: | https://arxiv.org/abs/1903.12261 | https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py

class albumentations.augmentations.blur.transforms.MedianBlur (blur_limit=7, always_apply=False, p=0.5) [view source on GitHub]

Blur the input image using a median filter with a random aperture linear size.

Parameters:

Name Type Description
blur_limit int

maximum aperture linear size for blurring the input image. Must be odd and in range [3, inf). Default: (3, 7).

p float

probability of applying the transform. Default: 0.5.

Targets: image

Image types: uint8, float32

class albumentations.augmentations.blur.transforms.MotionBlur (blur_limit=7, allow_shifted=True, always_apply=False, p=0.5) [view source on GitHub]

Apply motion blur to the input image using a random-sized kernel.

Parameters:

Name Type Description
blur_limit int

maximum kernel size for blurring the input image. Should be in range [3, inf). Default: (3, 7).

allow_shifted bool

if set to true creates non shifted kernels only, otherwise creates randomly shifted kernels. Default: True.

p float

probability of applying the transform. Default: 0.5.

Targets: image

Image types: uint8, float32

class albumentations.augmentations.blur.transforms.ZoomBlur (max_factor=1.31, step_factor=(0.01, 0.03), always_apply=False, p=0.5) [view source on GitHub]

Apply zoom blur transform. See https://arxiv.org/abs/1903.12261.

Parameters:

Name Type Description
max_factor [float, float] or float

range for max factor for blurring. If max_factor is a single float, the range will be (1, limit). Default: (1, 1.31). All max_factor values should be larger than 1.

step_factor [float, float] or float

If single float will be used as step parameter for np.arange. If tuple of float step_factor will be in range [step_factor[0], step_factor[1]). Default: (0.01, 0.03). All step_factor values should be positive.

p float

probability of applying the transform. Default: 0.5.

Targets: image

Image types: Any