Blur functional transforms (augmentations.blur.functional)¶
def create_gaussian_kernel (sigma, ksize=0)
[view source on GitHub]¶
Create a Gaussian kernel following PIL's approach.
Parameters:
Name | Type | Description |
---|---|---|
sigma | float | Standard deviation for Gaussian kernel. |
ksize | int | Kernel size. If 0, size is computed as int(sigma * 3.5) * 2 + 1 to match PIL's implementation. Otherwise, must be positive and odd. |
Returns:
Type | Description |
---|---|
np.ndarray | 2D normalized Gaussian kernel. |
Source code in albumentations/augmentations/blur/functional.py
def create_gaussian_kernel(sigma: float, ksize: int = 0) -> np.ndarray:
"""Create a Gaussian kernel following PIL's approach.
Args:
sigma: Standard deviation for Gaussian kernel.
ksize: Kernel size. If 0, size is computed as int(sigma * 3.5) * 2 + 1
to match PIL's implementation. Otherwise, must be positive and odd.
Returns:
np.ndarray: 2D normalized Gaussian kernel.
"""
# PIL's kernel creation approach
size = int(sigma * 3.5) * 2 + 1 if ksize == 0 else ksize
# Ensure odd size
size = size + 1 if size % 2 == 0 else size
# Create x coordinates
x = np.linspace(-(size // 2), size // 2, size)
# Compute 1D kernel using vectorized operations
kernel_1d = np.exp(-0.5 * (x / sigma) ** 2)
kernel_1d = kernel_1d / kernel_1d.sum()
# Create 2D kernel
return kernel_1d[:, np.newaxis] @ kernel_1d[np.newaxis, :]
def create_motion_kernel (kernel_size, angle, direction, allow_shifted, random_state)
[view source on GitHub]¶
Create a motion blur kernel.
Parameters:
Name | Type | Description |
---|---|---|
kernel_size | int | Size of the kernel (must be odd) |
angle | float | Angle in degrees (counter-clockwise) |
direction | float | Blur direction (-1.0 to 1.0) |
allow_shifted | bool | Allow kernel to be randomly shifted from center |
random_state | Random | Python's random.Random instance |
Returns:
Type | Description |
---|---|
np.ndarray | Motion blur kernel |
Source code in albumentations/augmentations/blur/functional.py
def create_motion_kernel(
kernel_size: int,
angle: float,
direction: float,
allow_shifted: bool,
random_state: Random,
) -> np.ndarray:
"""Create a motion blur kernel.
Args:
kernel_size: Size of the kernel (must be odd)
angle: Angle in degrees (counter-clockwise)
direction: Blur direction (-1.0 to 1.0)
allow_shifted: Allow kernel to be randomly shifted from center
random_state: Python's random.Random instance
Returns:
Motion blur kernel
"""
kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
center = kernel_size // 2
# Convert angle to radians
angle_rad = np.deg2rad(angle)
# Calculate direction vector
dx = np.cos(angle_rad)
dy = np.sin(angle_rad)
# Create line points with direction bias
line_length = kernel_size // 2
t = np.linspace(-line_length, line_length, kernel_size * 2)
# Apply direction bias
if direction != 0:
t = t * (1 + abs(direction))
if direction < 0:
t = t * -1
# Generate line coordinates
x = center + dx * t
y = center + dy * t
# Apply random shift if allowed
if allow_shifted and random_state is not None:
shift_x = random_state.uniform(-1, 1) * line_length / 2
shift_y = random_state.uniform(-1, 1) * line_length / 2
x += shift_x
y += shift_y
# Round coordinates and clip to kernel bounds
x = np.clip(np.round(x), 0, kernel_size - 1).astype(int)
y = np.clip(np.round(y), 0, kernel_size - 1).astype(int)
# Keep only unique points to avoid multiple assignments
points = np.unique(np.column_stack([y, x]), axis=0)
kernel[points[:, 0], points[:, 1]] = 1
# Ensure at least one point is set
if not kernel.any():
kernel[center, center] = 1
return kernel
def process_blur_limit (value, info, min_value=0)
[view source on GitHub]¶
Process blur limit to ensure valid kernel sizes.
Source code in albumentations/augmentations/blur/functional.py
def process_blur_limit(value: ScaleIntType, info: ValidationInfo, min_value: int = 0) -> tuple[int, int]:
"""Process blur limit to ensure valid kernel sizes."""
# Convert value to tuple[int, int]
if isinstance(value, Sequence):
if len(value) != 2:
raise ValueError("Sequence must contain exactly 2 elements")
result = (int(value[0]), int(value[1]))
else:
result = (min_value, int(value))
result = _ensure_min_value(result, min_value, info.field_name)
result = _ensure_odd_values(result, info.field_name)
if result[0] > result[1]:
final_result = (result[1], result[1])
warn(
f"{info.field_name}: Invalid range {result} (min > max). Range automatically adjusted to {final_result}.",
UserWarning,
stacklevel=2,
)
return final_result
return result
def sample_odd_from_range (random_state, low, high)
[view source on GitHub]¶
Sample an odd number from the range [low, high] (inclusive).
Parameters:
Name | Type | Description |
---|---|---|
random_state | Random | instance of random.Random |
low | int | lower bound (will be converted to nearest valid odd number) |
high | int | upper bound (will be converted to nearest valid odd number) |
Returns:
Type | Description |
---|---|
int | Randomly sampled odd number from the range |
Note
- Input values will be converted to nearest valid odd numbers:
- Values less than 3 will become 3
- Even values will be rounded up to next odd number
- After normalization, high must be >= low
Source code in albumentations/augmentations/blur/functional.py
def sample_odd_from_range(random_state: Random, low: int, high: int) -> int:
"""Sample an odd number from the range [low, high] (inclusive).
Args:
random_state: instance of random.Random
low: lower bound (will be converted to nearest valid odd number)
high: upper bound (will be converted to nearest valid odd number)
Returns:
Randomly sampled odd number from the range
Note:
- Input values will be converted to nearest valid odd numbers:
* Values less than 3 will become 3
* Even values will be rounded up to next odd number
- After normalization, high must be >= low
"""
# Normalize low value
low = max(3, low + (low % 2 == 0))
# Normalize high value
high = max(3, high + (high % 2 == 0))
# Ensure high >= low after normalization
high = max(high, low)
if low == high:
return low
# Calculate number of possible odd values
num_odd_values = (high - low) // 2 + 1
# Generate random index and convert to corresponding odd number
rand_idx = random_state.randint(0, num_odd_values - 1)
return low + (2 * rand_idx)