albumentations.augmentations.dropout.functional


Functional implementations of dropout operations for image augmentation. This module provides low-level functions for various dropout techniques used in image augmentation, including channel dropout, grid dropout, mask dropout, and coarse dropout. These functions create and apply dropout patterns to images, masks, bounding boxes, and keypoints, with support for different filling methods and hole generation strategies.

apply_inpaintingfunction

apply_inpainting(
    img: np.ndarray,
    holes: np.ndarray,
    method: Literal['inpaint_telea', 'inpaint_ns']
)

Apply OpenCV inpainting to fill the holes in the image.

Parameters

NameTypeDefaultDescription
imgnp.ndarray-Input image (grayscale or BGR)
holesnp.ndarray-Array of [x1, y1, x2, y2] coordinates
method
One of:
  • 'inpaint_telea'
  • 'inpaint_ns'
-Inpainting method to use

Returns

  • np.ndarray: Inpainted image

calculate_grid_dimensionsfunction

calculate_grid_dimensions(
    image_shape: tuple[int, int],
    unit_size_range: tuple[int, int] | None,
    holes_number_xy: tuple[int, int] | None,
    random_generator: np.random.Generator
)

Calculate the dimensions of grid units for GridDropout. This function determines the size of grid units based on the input parameters. It supports three modes of operation: 1. Using a range of unit sizes 2. Using a specified number of holes in x and y directions 3. Falling back to a default calculation

Parameters

NameTypeDefaultDescription
image_shapetuple[int, int]-The shape of the image as (height, width).
unit_size_range
One of:
  • tuple[int, int]
  • None
-A range of possible unit sizes. If provided, a random size within this range will be chosen for both height and width.
holes_number_xy
One of:
  • tuple[int, int]
  • None
-The number of holes in the x and y directions. If provided, the grid dimensions will be calculated to fit this number of holes.
random_generatornp.random.Generator-The random generator to use for generating random values.

Returns

  • tuple[int, int]: The calculated grid unit dimensions as (unit_height, unit_width).

Notes

- If both unit_size_range and holes_number_xy are None, the function falls back to a default calculation, where the grid unit size is set to max(2, image_dimension // 10) for both height and width. - The function prioritizes unit_size_range over holes_number_xy if both are provided. - When using holes_number_xy, the actual number of holes may be slightly different due to integer division.

channel_dropoutfunction

channel_dropout(
    img: np.ndarray,
    channels_to_drop: int | tuple[int, ...] | np.ndarray,
    fill_value: tuple[float, ...] | float = 0
)

Drop channels from an image. This function drops channels from an image.

Parameters

NameTypeDefaultDescription
imgnp.ndarray-Input image.
channels_to_drop
One of:
  • int
  • tuple[int, ...]
  • np.ndarray
-Channels to drop.
fill_value
One of:
  • tuple[float, ...]
  • float
0Value to fill the dropped channels with.

Returns

  • np.ndarray: Image with channels dropped.

cutoutfunction

cutout(
    img: np.ndarray,
    holes: np.ndarray,
    fill_value: tuple[float, ...] | float | Literal['random', 'random_uniform', 'inpaint_telea', 'inpaint_ns'],
    random_generator: np.random.Generator
)

Apply cutout augmentation to the image by cutting out holes and filling them.

Parameters

NameTypeDefaultDescription
imgnp.ndarray-The image to augment
holesnp.ndarray-Array of [x1, y1, x2, y2] coordinates
fill_value
One of:
  • tuple[float, ...]
  • float
  • Literal['random', 'random_uniform', 'inpaint_telea', 'inpaint_ns']
-Value to fill holes with. Can be: - number (int/float): Will be broadcast to all channels - sequence (tuple/list/ndarray): Must match number of channels - "random": Different random values for each pixel - "random_uniform": Same random value for entire hole - "inpaint_telea"/"inpaint_ns": OpenCV inpainting methods
random_generatornp.random.Generator-Random number generator for random fills

fill_holes_with_randomfunction

fill_holes_with_random(
    img: np.ndarray,
    holes: np.ndarray,
    random_generator: np.random.Generator,
    uniform: bool
)

Fill holes with random values.

Parameters

NameTypeDefaultDescription
imgnp.ndarray-Input image
holesnp.ndarray-Array of [x1, y1, x2, y2] coordinates
random_generatornp.random.Generator-Random number generator
uniformbool-If True, use same random value for entire hole

fill_holes_with_valuefunction

fill_holes_with_value(
    img: np.ndarray,
    holes: np.ndarray,
    fill_value: np.ndarray
)

Fill holes with a constant value.

Parameters

NameTypeDefaultDescription
imgnp.ndarray-Input image
holesnp.ndarray-Array of [x1, y1, x2, y2] coordinates
fill_valuenp.ndarray-Value to fill the holes with

filter_bboxes_by_holesfunction

filter_bboxes_by_holes(
    bboxes: np.ndarray,
    holes: np.ndarray,
    image_shape: tuple[int, int],
    min_area: float,
    min_visibility: float
)

Filter bounding boxes by holes. This function filters bounding boxes by holes.

Parameters

NameTypeDefaultDescription
bboxesnp.ndarray-Array of bounding boxes.
holesnp.ndarray-Array of holes.
image_shapetuple[int, int]-Shape of the image.
min_areafloat-Minimum area of a bounding box.
min_visibilityfloat-Minimum visibility of a bounding box.

Returns

  • np.ndarray: Filtered bounding boxes.

filter_keypoints_in_holesfunction

filter_keypoints_in_holes(
    keypoints: np.ndarray,
    holes: np.ndarray
)

Filter out keypoints that are inside any of the holes.

Parameters

NameTypeDefaultDescription
keypointsnp.ndarray-Array of keypoints with shape (num_keypoints, 2+). The first two columns are x and y coordinates.
holesnp.ndarray-Array of holes with shape (num_holes, 4). Each hole is represented as [x1, y1, x2, y2].

Returns

  • np.ndarray: Array of keypoints that are not inside any hole.

generate_grid_holesfunction

generate_grid_holes(
    image_shape: tuple[int, int],
    grid: tuple[int, int],
    ratio: float,
    random_offset: bool,
    shift_xy: tuple[int, int],
    random_generator: np.random.Generator
)

Generate a list of holes for GridDropout using a uniform grid. This function creates a grid of holes for use in the GridDropout augmentation technique. It allows for customization of the grid size, hole size ratio, and positioning of holes.

Parameters

NameTypeDefaultDescription
image_shapetuple[int, int]-The shape of the image as (height, width).
gridtuple[int, int]-The grid size as (rows, columns). This determines the number of cells in the grid, where each cell may contain a hole.
ratiofloat-The ratio of the hole size to the grid cell size. Should be between 0 and 1. A ratio of 1 means the hole will fill the entire grid cell.
random_offsetbool-If True, applies random offsets to each hole within its grid cell. If False, uses the global shift specified by shift_xy.
shift_xytuple[int, int]-The global shift to apply to all holes as (shift_x, shift_y). Only used when random_offset is False.
random_generatornp.random.Generator-The random generator for generating random offsets and shuffling. If None, a new Generator will be created.

Returns

  • np.ndarray: An array of hole coordinates, where each hole is represented as

Notes

- The function first creates a uniform grid based on the image shape and specified grid size. - Hole sizes are calculated based on the provided ratio and grid cell sizes. - If random_offset is True, each hole is randomly positioned within its grid cell. - If random_offset is False, all holes are shifted by the global shift_xy value. - The function ensures that all holes remain within the image boundaries.

generate_random_fillfunction

generate_random_fill(
    dtype: np.dtype,
    shape: tuple[int, ...],
    random_generator: np.random.Generator
)

Generate a random fill array based on the given dtype and target shape. This function creates a numpy array filled with random values. The range and type of these values depend on the input dtype. For integer dtypes, it generates random integers. For floating-point dtypes, it generates random floats.

Parameters

NameTypeDefaultDescription
dtypenp.dtype-The data type of the array to be generated.
shapetuple[int, ...]-The shape of the array to be generated.
random_generatornp.random.Generator-The random generator to use for generating values. If None, the default numpy random generator is used.

Returns

  • np.ndarray: A numpy array of the specified shape and dtype, filled with random values.

get_holes_from_boxesfunction

get_holes_from_boxes(
    target_boxes: np.ndarray,
    num_holes_per_box: int,
    hole_height_range: tuple[float, float],
    hole_width_range: tuple[float, float],
    random_generator: np.random.Generator
)

Generate holes based on bounding boxes.

Parameters

NameTypeDefaultDescription
target_boxesnp.ndarray--
num_holes_per_boxint--
hole_height_rangetuple[float, float]--
hole_width_rangetuple[float, float]--
random_generatornp.random.Generator--

get_holes_from_maskfunction

get_holes_from_mask(
    mask: np.ndarray,
    num_holes_per_obj: int,
    mask_indices: list[int],
    hole_height_range: tuple[float, float],
    hole_width_range: tuple[float, float],
    random_generator: np.random.Generator
)

Generate holes based on segmentation mask.

Parameters

NameTypeDefaultDescription
masknp.ndarray--
num_holes_per_objint--
mask_indiceslist[int]--
hole_height_rangetuple[float, float]--
hole_width_rangetuple[float, float]--
random_generatornp.random.Generator--

labelfunction

label(
    mask: np.ndarray,
    return_num: bool = False,
    connectivity: int = 2
)

Label connected regions of an integer array. This function uses OpenCV's connectedComponents under the hood but mimics the behavior of scikit-image's label function.

Parameters

NameTypeDefaultDescription
masknp.ndarray-The array to label. Must be of integer type.
return_numboolFalseIf True, return the number of labels (default: False).
connectivityint2Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are 1 or 2. Default is 2.

Returns

  • np.ndarray | tuple[np.ndarray, int]: Labeled array, where all connected regions are

mask_dropout_bboxesfunction

mask_dropout_bboxes(
    bboxes: np.ndarray,
    dropout_mask: np.ndarray,
    image_shape: tuple[int, int],
    min_area: float,
    min_visibility: float
)

Filter and resize bounding boxes based on dropout mask.

Parameters

NameTypeDefaultDescription
bboxesnp.ndarray-Array of bounding boxes with shape (num_boxes, 4+)
dropout_masknp.ndarray-Binary mask indicating dropped areas
image_shapetuple[int, int]-Shape of the image (height, width)
min_areafloat-Minimum area of a bounding box to keep
min_visibilityfloat-Minimum visibility ratio of a bounding box to keep

Returns

  • np.ndarray: Filtered and resized bounding boxes

mask_dropout_keypointsfunction

mask_dropout_keypoints(
    keypoints: np.ndarray,
    dropout_mask: np.ndarray
)

Filter keypoints based on dropout mask.

Parameters

NameTypeDefaultDescription
keypointsnp.ndarray-Array of keypoints with shape (num_keypoints, 2+)
dropout_masknp.ndarray-Binary mask indicating dropped areas

Returns

  • np.ndarray: Filtered keypoints

resize_boxes_to_visible_areafunction

resize_boxes_to_visible_area(
    boxes: np.ndarray,
    hole_mask: np.ndarray
)

Resize boxes to their largest visible rectangular regions.

Parameters

NameTypeDefaultDescription
boxesnp.ndarray--
hole_masknp.ndarray--

sample_points_from_componentsfunction

sample_points_from_components(
    mask: np.ndarray,
    num_points: int,
    random_generator: np.random.Generator
)

Sample points from connected components in a mask.

Parameters

NameTypeDefaultDescription
masknp.ndarray-Binary mask
num_pointsint-Number of points to sample
random_generatornp.random.Generator-Random number generator

Returns

  • tuple[np.ndarray, np.ndarray] | None: Tuple of (x_coordinates, y_coordinates) or None if no valid components