Your ad could be here - Reach CV/ML engineers
Contact for advertisingContactInterested in advertising?
Contact usStay updated
News & Insightsalbumentations.augmentations.geometric.pad
Padding transformations for images and related data. This module provides transformations for padding images and associated data. Padding is the process of adding pixels to the borders of an image to increase its dimensions. Common use cases include: - Ensuring uniform sizes for model inputs in a batch - Making image dimensions divisible by specific values (often required by CNNs) - Creating space around an image for annotations or visual purposes - Standardizing data dimensions for processing pipelines Padding transformations in this module support various border modes (constant, reflection, replication) and properly handle all target types including images, masks, bounding boxes, and keypoints.
Members
- classPad
- classPadIfNeeded
Padclass
Pad the sides of an image by specified number of pixels.
Parameters
Name | Type | Default | Description |
---|---|---|---|
padding | One of:
| 0 | Padding values. Can be: * int - pad all sides by this value * tuple[int, int] - (pad_x, pad_y) to pad left/right by pad_x and top/bottom by pad_y * tuple[int, int, int, int] - (left, top, right, bottom) specific padding per side |
fill | One of:
| 0 | Padding value if border_mode is cv2.BORDER_CONSTANT |
fill_mask | One of:
| 0 | Padding value for mask if border_mode is cv2.BORDER_CONSTANT |
border_mode | One of:
| 0 | OpenCV border mode |
p | float | 1.0 | probability of applying the transform. Default: 1.0. |
Examples
>>> import numpy as np
>>> import albumentations as A
>>> import cv2
>>>
>>> # Prepare sample data
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> mask = np.random.randint(0, 2, (100, 100), dtype=np.uint8)
>>> bboxes = np.array([[10, 10, 50, 50], [40, 40, 80, 80]], dtype=np.float32)
>>> bbox_labels = [1, 2]
>>> keypoints = np.array([[20, 30], [60, 70]], dtype=np.float32)
>>> keypoint_labels = [0, 1]
>>>
>>> # Example 1: Pad all sides by the same value
>>> transform = A.Compose([
... A.Pad(padding=20, border_mode=cv2.BORDER_CONSTANT, fill=0),
... ], bbox_params=A.BboxParams(format='pascal_voc', label_fields=['bbox_labels']),
... keypoint_params=A.KeypointParams(format='xy', label_fields=['keypoint_labels']))
>>>
>>> # Apply the transform
>>> padded = transform(
... image=image,
... mask=mask,
... bboxes=bboxes,
... bbox_labels=bbox_labels,
... keypoints=keypoints,
... keypoint_labels=keypoint_labels
... )
>>>
>>> # Get the padded data
>>> padded_image = padded['image'] # Shape will be (140, 140, 3)
>>> padded_mask = padded['mask'] # Shape will be (140, 140)
>>> padded_bboxes = padded['bboxes'] # Bounding boxes coordinates adjusted to the padded image
>>> padded_keypoints = padded['keypoints'] # Keypoints coordinates adjusted to the padded image
>>>
>>> # Example 2: Different padding for sides using (pad_x, pad_y)
>>> transform_xy = A.Compose([
... A.Pad(
... padding=(10, 30), # 10px padding on left/right, 30px on top/bottom
... border_mode=cv2.BORDER_CONSTANT,
... fill=128 # Gray padding color
... ),
... ])
>>>
>>> padded_xy = transform_xy(image=image)
>>> padded_xy_image = padded_xy['image'] # Shape will be (160, 120, 3)
>>>
>>> # Example 3: Different padding for each side
>>> transform_sides = A.Compose([
... A.Pad(
... padding=(5, 10, 15, 20), # (left, top, right, bottom)
... border_mode=cv2.BORDER_CONSTANT,
... fill=0,
... fill_mask=0
... ),
... ], bbox_params=A.BboxParams(format='pascal_voc', label_fields=['bbox_labels']))
>>>
>>> padded_sides = transform_sides(
... image=image,
... mask=mask,
... bboxes=bboxes,
... bbox_labels=bbox_labels
... )
>>>
>>> padded_sides_image = padded_sides['image'] # Shape will be (130, 120, 3)
>>> padded_sides_bboxes = padded_sides['bboxes'] # Bounding boxes adjusted to the new coordinates
>>>
>>> # Example 4: Using different border_mode options
>>> # Create a smaller image for better visualization of reflection/wrapping
>>> small_image = np.random.randint(0, 256, (10, 10, 3), dtype=np.uint8)
>>>
>>> # Reflection padding
>>> reflect_pad = A.Compose([
... A.Pad(padding=5, border_mode=cv2.BORDER_REFLECT_101),
... ])
>>> reflected = reflect_pad(image=small_image)
>>> reflected_image = reflected['image'] # Shape will be (20, 20, 3) with reflected edges
>>>
>>> # Replicate padding
>>> replicate_pad = A.Compose([
... A.Pad(padding=5, border_mode=cv2.BORDER_REPLICATE),
... ])
>>> replicated = replicate_pad(image=small_image)
>>> replicated_image = replicated['image'] # Shape will be (20, 20, 3) with replicated edges
>>>
>>> # Example 5: Padding with masks and constant border mode
>>> binary_mask = np.zeros((50, 50), dtype=np.uint8)
>>> binary_mask[10:40, 10:40] = 1 # Set center region to 1
>>>
>>> mask_transform = A.Compose([
... A.Pad(
... padding=10,
... border_mode=cv2.BORDER_CONSTANT,
... fill=0, # Black padding for image
... fill_mask=0 # Use 0 for mask padding (background)
... ),
... ])
>>>
>>> padded_mask_result = mask_transform(image=image, mask=binary_mask)
>>> padded_binary_mask = padded_mask_result['mask'] # Shape will be (70, 70)
References
PadIfNeededclass
Pads the sides of an image if the image dimensions are less than the specified minimum dimensions. If the `pad_height_divisor` or `pad_width_divisor` is specified, the function additionally ensures that the image dimensions are divisible by these values.
Parameters
Name | Type | Default | Description |
---|---|---|---|
min_height | One of:
| 1024 | Minimum desired height of the image. Ensures image height is at least this value. If not specified, pad_height_divisor must be provided. |
min_width | One of:
| 1024 | Minimum desired width of the image. Ensures image width is at least this value. If not specified, pad_width_divisor must be provided. |
pad_height_divisor | One of:
| None | If set, pads the image height to make it divisible by this value. If not specified, min_height must be provided. |
pad_width_divisor | One of:
| None | If set, pads the image width to make it divisible by this value. If not specified, min_width must be provided. |
position | One of:
| center | Position where the image is to be placed after padding. Default is 'center'. |
border_mode | One of:
| 0 | Specifies the border mode to use if padding is required. The default is `cv2.BORDER_CONSTANT`. |
fill | One of:
| 0 | Value to fill the border pixels if the border mode is `cv2.BORDER_CONSTANT`. Default is None. |
fill_mask | One of:
| 0 | Similar to `fill` but used for padding masks. Default is None. |
p | float | 1.0 | Probability of applying the transform. Default is 1.0. |
Examples
>>> import numpy as np
>>> import albumentations as A
>>> import cv2
>>>
>>> # Prepare sample data
>>> image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
>>> mask = np.random.randint(0, 2, (100, 100), dtype=np.uint8)
>>> bboxes = np.array([[10, 10, 50, 50], [40, 40, 80, 80]], dtype=np.float32)
>>> bbox_labels = [1, 2]
>>> keypoints = np.array([[20, 30], [60, 70]], dtype=np.float32)
>>> keypoint_labels = [0, 1]
>>>
>>> # Example 1: Basic usage with min_height and min_width
>>> transform = A.Compose([
... A.PadIfNeeded(min_height=150, min_width=200, border_mode=cv2.BORDER_CONSTANT, fill=0),
... ], bbox_params=A.BboxParams(format='pascal_voc', label_fields=['bbox_labels']),
... keypoint_params=A.KeypointParams(format='xy', label_fields=['keypoint_labels']))
>>>
>>> # Apply the transform
>>> padded = transform(
... image=image,
... mask=mask,
... bboxes=bboxes,
... bbox_labels=bbox_labels,
... keypoints=keypoints,
... keypoint_labels=keypoint_labels
... )
>>>
>>> # Get the padded data
>>> padded_image = padded['image'] # Shape will be (150, 200, 3)
>>> padded_mask = padded['mask'] # Shape will be (150, 200)
>>> padded_bboxes = padded['bboxes'] # Bounding boxes adjusted for the padded image
>>> padded_bbox_labels = padded['bbox_labels'] # Labels remain unchanged
>>> padded_keypoints = padded['keypoints'] # Keypoints adjusted for the padded image
>>> padded_keypoint_labels = padded['keypoint_labels'] # Labels remain unchanged
>>>
>>> # Example 2: Using pad_height_divisor and pad_width_divisor
>>> # This ensures the output dimensions are divisible by the specified values
>>> transform_divisor = A.Compose([
... A.PadIfNeeded(
... pad_height_divisor=32,
... pad_width_divisor=32,
... border_mode=cv2.BORDER_CONSTANT,
... fill=0
... ),
... ])
>>>
>>> padded_divisor = transform_divisor(image=image)
>>> padded_divisor_image = padded_divisor['image'] # Shape will be (128, 128, 3) - divisible by 32
>>>
>>> # Example 3: Different position options
>>> # Create a small recognizable image for better visualization of positioning
>>> small_image = np.zeros((50, 50, 3), dtype=np.uint8)
>>> small_image[20:30, 20:30, :] = 255 # White square in the middle
>>>
>>> # Top-left positioning
>>> top_left_pad = A.Compose([
... A.PadIfNeeded(
... min_height=100,
... min_width=100,
... position="top_left",
... border_mode=cv2.BORDER_CONSTANT,
... fill=128 # Gray padding
... ),
... ])
>>> top_left_result = top_left_pad(image=small_image)
>>> top_left_image = top_left_result['image'] # Image will be at top-left of 100x100 canvas
>>>
>>> # Center positioning (default)
>>> center_pad = A.Compose([
... A.PadIfNeeded(
... min_height=100,
... min_width=100,
... position="center",
... border_mode=cv2.BORDER_CONSTANT,
... fill=128
... ),
... ])
>>> center_result = center_pad(image=small_image)
>>> center_image = center_result['image'] # Image will be centered in 100x100 canvas
>>>
>>> # Example 4: Different border_mode options
>>> # Reflection padding
>>> reflect_pad = A.Compose([
... A.PadIfNeeded(
... min_height=100,
... min_width=100,
... border_mode=cv2.BORDER_REFLECT_101
... ),
... ])
>>> reflected = reflect_pad(image=small_image)
>>> reflected_image = reflected['image'] # Will use reflection for padding
>>>
>>> # Replication padding
>>> replicate_pad = A.Compose([
... A.PadIfNeeded(
... min_height=100,
... min_width=100,
... border_mode=cv2.BORDER_REPLICATE
... ),
... ])
>>> replicated = replicate_pad(image=small_image)
>>> replicated_image = replicated['image'] # Will use edge replication for padding
>>>
>>> # Example 5: Working with masks and custom fill values
>>> binary_mask = np.zeros((50, 50), dtype=np.uint8)
>>> binary_mask[10:40, 10:40] = 1 # Set center region to 1
>>>
>>> mask_transform = A.Compose([
... A.PadIfNeeded(
... min_height=100,
... min_width=100,
... border_mode=cv2.BORDER_CONSTANT,
... fill=0, # Black padding for image
... fill_mask=0 # Use 0 for mask padding (background)
... ),
... ], bbox_params=A.BboxParams(format='pascal_voc', label_fields=['bbox_labels']))
>>>
>>> padded_mask_result = mask_transform(
... image=image,
... mask=binary_mask,
... bboxes=bboxes,
... bbox_labels=bbox_labels
... )
>>> padded_binary_mask = padded_mask_result['mask'] # Shape will be (100, 100)
>>> padded_result_bboxes = padded_mask_result['bboxes'] # Adjusted for padding
>>> padded_result_bbox_labels = padded_mask_result['bbox_labels'] # Labels remain unchanged
Notes
- Either `min_height` or `pad_height_divisor` must be set, but not both. - Either `min_width` or `pad_width_divisor` must be set, but not both. - If `border_mode` is set to `cv2.BORDER_CONSTANT`, `value` must be provided. - The transform will maintain consistency across all targets (image, mask, bboxes, keypoints, volume). - For bounding boxes, the coordinates will be adjusted to account for the padding. - For keypoints, their positions will be shifted according to the padding.